Complexity and algorithms for injective edge-coloring in graphs - Archive ouverte HAL
Article Dans Une Revue Information Processing Letters Année : 2021

Complexity and algorithms for injective edge-coloring in graphs

Résumé

An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1,. .. , k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called Injective k-Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k ≥ 45, we show that Injective k-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 5 √ 3k. In contrast with these negative results, we show that Injective k-Edge-Coloring is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most k/2 is injectively k-edge-colorable.
Fichier principal
Vignette du fichier
main.pdf (366.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03201544 , version 1 (19-04-2021)

Identifiants

Citer

Florent Foucaud, Hervé Hocquard, Dimitri Lajou. Complexity and algorithms for injective edge-coloring in graphs. Information Processing Letters, 2021, 170, pp.106121. ⟨10.1016/j.ipl.2021.106121⟩. ⟨hal-03201544⟩
105 Consultations
120 Téléchargements

Altmetric

Partager

More