A comparative study of polynomial-type chaos expansions for indicator functions - Archive ouverte HAL
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2022

A comparative study of polynomial-type chaos expansions for indicator functions

Résumé

We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator functions of the form 1 c≤X for some threshold parameter c ∈ R and a random variable X associated with classical orthogonal polynomials. We provide tight global and localized L2 estimates for the resulting truncation of the PCE and numerical experiments support the tightness of the error estimates. We also compare the theoretical and numerical accuracy of PCE when extra quantile/probability transforms are applied, revealing different optimal choices according to the value of c in the center and the tails of the distribution of X.
Fichier principal
Vignette du fichier
main.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03199734 , version 1 (15-04-2021)

Identifiants

Citer

Florian Bourgey, Emmanuel Gobet, Clément Rey. A comparative study of polynomial-type chaos expansions for indicator functions. SIAM/ASA Journal on Uncertainty Quantification, 2022, 10 (4), pp.1350-1383. ⟨10.1137/21M1413146⟩. ⟨hal-03199734⟩
250 Consultations
291 Téléchargements

Altmetric

Partager

More