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A comparative study of polynomial-type chaos expansions for

indicator functions

F. Bourgey∗, E. Gobet†, C. Rey‡

April 15, 2021

Abstract

We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator
functions of the form 1c≤X for some threshold parameter c ∈ R and a random variable X
associated with classical orthogonal polynomials. We provide tight global and localized L2

estimates for the resulting truncation of the PCE and numerical experiments support the
tightness of the error estimates. We also compare the theoretical and numerical accuracy
of PCE when extra quantile/probability transforms are applied, revealing different optimal
choices according to the value of c in the center and the tails of the distribution of X.
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1 Introduction

We study a refined polynomial chaos expansion (PCE) for indicator functions of the form 1c≤X
for a general scalar random variable X and some parameter c ∈ R. The random variable X
is distributed according to ν(dx) = w(x)dx, a probability measure absolutely continuous with
respect to the Lebesgue measure defined in a finite or infinite interval Iw = (a, b) of R. To
perform our PCE, we work with orthogonal polynomial sets (OPS), that is, sets of polynomial
functions (pn)n∈N of degree n associated with the probability measure ν, and satisfying an
orthogonal property of the form:

〈pn, pm〉L2(ν) :=

∫
Iw

pn(x)pm(x)ν(dx) = hnδnm, for all n,m ∈ N, (1.1)

where δnm = 1 if n = m or 0 and

hn := ‖pn‖2L2(ν) =

∫ b

a
pn(x)2ν(dx). (1.2)

We assume the existence of κ > 0 such that∫
R
eκ|x|ν(dx) < +∞, (1.3)

which ensures the existence of an OPS associated with ν, that the squared L2 norm is finite,
i.e., hn < +∞, and that the OPS associated with ν is dense in L2(R, ν) (see, e.g., [14, Theorem
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3.4] for a review of sufficient conditions ensuring the density of an OPS and connections with
the moment problem).

From the polynomial denseness property available under Assumption (1.3), we have that for
every f ∈ L2 (ν), the following PCE holds (see, e.g., Kakutani [22], [17] or [33]),

f
L2(ν)

=
+∞∑
n=0

γn(f)pn, γn(f) =
〈f, pn〉L2(ν)

‖pn‖2L2(ν)

. (1.4)

“Homogeneous chaos” (or “Wiener chaos expansion”) was first introduced by [37] using Hermite
polynomials, i.e., an OPS when ν is a Gaussian measure (see Table 1), to model stochastic
processes with Gaussian random variables. It was then extensively used in [17] for Hermite-chaos
when dealing with the normal distribution (see also [30] for Charlier-chaos expansion for the
Poisson distribution). A general and unified extension of the Wiener chaos expansion (referred
to as PCE) to an arbitrary probability measure associated with any orthogonal polynomials
belonging to the so-called Askey-scheme [3] was proposed in [38]. PCE is now standard and
extensively used in the uncertainty quantification community, and is, with Gaussian processes,
one of the two main classes of surrogate models for sensitivity analysis (see, e.g., [26] and
references therein).

In our specific approach, we focus on the discontinuous case f : x 7→ 1{c≤x} for some c ∈ R.
In practice, one has no choice but to truncate the PCE (infinite sum) at some order N ∈ N∗,
and approximate the indicator function with

1c≤X ≈
N∑
n=0

γn(c)pn(X). (1.5)

From the orthogonality condition (1.1), the related L2 truncation error writes as

EN (c) := E

∣∣∣∣∣1c≤X −
N∑
n=0

γn(c)pn(X)

∣∣∣∣∣
2
 1

2

=

∣∣∣∣∣
+∞∑

n=N+1

hnγn(c)2

∣∣∣∣∣
1
2

. (1.6)

Objectives. In this paper, we focus on the case where (pn)n∈N is a classical OPS (COPS),
i.e., ν is either a gamma, beta, or normal distribution. The respective orthogonal polynomials

are then called Laguerre L
(α)
n with α > −1, Iw = (0,∞), w(x) ∝ xαe−x, or Jacobi P

(α,β)
n with

α, β > −1, Iw = (−1, 1), w(x) ∝ (1− x)α (1 + x)β, or Hermite polynomials with Iw = R,

w(x) ∝ e−
x2

2 (see Table 1 for some detailed properties and notations regarding the COPS). Note
that condition (1.3) can easily be checked for the COPS and ensures the existence and denseness
in L2(R, ν). Restricting to COPS will be crucial for deriving recurrence relations regarding the
truncation parameters (see Proposition 2.2) thanks to Rodrigues’ formula (see Theorem 2.1).

Our first objective is to provide (tight) global and local L2 truncation error estimates for
EN (c) (see Theorems 2.2–2.4). Our main motivation comes from [8, Theorem 2.6] in which the
authors provide uniform estimates in c for the L2 error (when dealing with Hermite polyno-

mials) of order N−
1
4 . Surprisingly, though the order is relatively low, the PCE seems to work

exceptionally well on their practical applications only with a few N for large values of c. Such
a behavior probably indicates that the uniform estimate hides an extra term (most likely expo-
nential in c), which ensures the approximation to be effective for appropriate ranges of value for
c. We thus aim at exhibiting the dependence in c for EN (c) and seeking whether such a behavior
is specific to the Hermite case or holds also for Jacobi and Laguerre polynomials.

Our second objective concerns the choice of COPS one should consider when performing
the expansion w.r.t. X. Indeed, for two probability measures ν, ν̃ (beta, gamma, or normal)
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with respective c.d.f. Fν , Fν̃ , and respective OPS (pn)n∈N, (p̃n)n∈N, the following probabilistic
transformation always holds (see section 3.2),

1c≤X = 1Fν(c)≤Fν(X)
d
= 1c̃≤X̃ , (1.7)

where c̃ = T (c) and X̃ = T (X)
d
= ν̃ for T = F−1

ν̃ ◦ Fν defined as the composition of the
quantile and probability transforms. A natural question arising is whether is it optimal in
L2 sense to approximate 1c≤X with the PCE

∑N
n=0 γn(c)pn(X) or with the chaos expansion∑N

n=0 γn(c̃)p̃n(X̃), which is not a polynomial in the variable X anymore. For the examples
of first-order ordinary differential equation [38] and of the coupled Navier–Stokes structure
equations [39], the authors numerically illustrate that it is optimal to perform the PCE w.r.t. X
rather than any X̃. However, regarding our problem of approximating 1c≤X , we will demonstrate
that the optimal convergence is not so simple and depends on whether c is in the bulk or in the
tails of the distribution.

Motivation and applications. We provide two instances motivating the current study. In
[8], the authors investigate a metamodel for approximating the distribution of

LK :=
K∑
k=1

lk1ck≤X ,

which reads as the credit portfolio loss in a Gaussian copula model (X
d
= N (0, 1)), where

X, c1, . . . , cK are independent Gaussian random variables and (lk)k=1,...,K are deterministic co-
efficients. Expanding each indicator function using a PCE and truncating at order N gives

LK ≈ LK,N :=
K∑
k=1

lk

N∑
n=0

γ(ck)pn(X) =
N∑
n=0

( K∑
k=1

lkγ(ck)
)

︸ ︷︷ ︸
:=εK,n

pn(X).

The advantage of such a decomposition is the possibility of approximating the vector (εK,n)n∈N
by a Gaussian vector (using central limit theorem arguments). When sampling LK , this approach
is particularly efficient for large K. The global error analysis relies much on bounds on EN (c)
for many c. Indeed, following the proof of [8, Theorem 2.6], one has

E
[
(LK − LK,N )2

] 1
2 ≤

K∑
k=1

|lk| E [EN (ck)] ,

showing the importance of pointwise control of EN (c) w.r.t. N and c.
A second example motivating our study is related to random graphs generated as follows: the

adjacency value between two vertices i and j is defined by Yi,j = 1si,j≤Xi,j for some scalar random
variable Xi,j and a parameter si,j ∈ R. The random graphs topic is a well-developed research
area, see [5, 36]. See also [24, Chapters 5 and 6] for a reference on stochastic block models. Any
model will specify the dependence between the random variables Xi,j . For instance, in [18] the
Xi,j ’s form a Gaussian vector correlated to a single Gaussian factor X. Computing the weighted
degree of a vertex i boils down to defining a quantity of the form LK where K is the number
of other vertices of the graph. Expanding this quantity via a PCE allows to get a metamodel
for the weighted degree, under a form that can be simulated more efficiently, especially for large
graphs. Beyond convergence rate issues with respect to the chaos truncation, choosing the type
of chaos expansion (e.g., the quantile/probability transform T in (1.7)) is relevant and will be
addressed in the current work. For a recent study about asymptotics of the degree LK of random
graphs, see [12].
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Background results. Approximating a function f with a truncated series of orthogonal poly-
nomials is somehow standard. The extensive study of orthogonal polynomials is available in the
influential works of [34], or more recently [32], where various approximation issues are also stud-
ied. The interest in quantifying convergence rates has increased with the expansion of numerical
analysis, and for which one has to approximate a function with a polynomial like in spectral
methods, see, e.g., [9, 4]. In these references, the function is assumed to be smooth: convergence
rates in L2 norm for Jacobi polynomials are given, for instance, in [9, Chapter 9] and write as
N−k, where k represents the smoothness of f and N is the polynomial degree. For unbounded

support (Laguerre, Hermite), the rate becomes N−
k
2 , see [15, section 6.7]. To the best of our

knowledge, the rate of convergence for non-smooth functions (like the indicator function) has
not been considered in the literature before. In the (infinity-dimensional) stochastic analysis
community, in which PCE with Gaussian noise is considered, people relate the chaos truncation
error to the smoothness in the Malliavin sense. More precisely, from [29, Proposition 1.2.2], if
F is a square integrable random variable with the Wiener chaos expansion F =

∑∞
n=0 JnF (Jn

being the projection on the nth chaos), then F ∈ Dk,2 if and only if
∑+∞

n=1 n
k‖JnF‖22 < +∞

where Dk,2 refers to the usual Sobolev space, see, e.g., [29, Equation 1.32] for a definition.
Consequently, as soon as F ∈ Dk,2, then

‖F −
N∑
n=0

JnF‖2 =
( +∞∑
n=N+1

‖JnF‖22
) 1

2 ≤ (1 +N)−
k
2

( +∞∑
n=N+1

nk‖JnF‖22
) 1

2
= O(N−

k
2 ),

which corresponds to the same rate obtained for the Hermite polynomials. The case F = 1c≤W1 ,
where (Wt)t≥0 is a standard Brownian motion, corresponds to a fractional smoothness case (see

[16]) with regularity k = 1
2 leading to an L2 truncation error of O(N−

1
4 ) uniform in c (see also

[8, Theorem 2.6]). In Theorem 2.2, we establish a finer result obtaining the same error in N
but keeping the dependence on c for Hermite polynomials, and extending the analysis to the
Laguerre (Theorem 2.3) and Jacobi (Theorem 2.4) polynomials.

Our contributions. When ν is associated with a COPS, we prove a stronger result than the
L2 (ν) equality in (1.4), and establish the pointwise convergence

∑N
n=0 γn(c)pn(X) → 1c≤X for

any X ∈ Iw \ {c} as N → +∞. For a fixed not-too-extreme c, we establish (see section 2.3) that
it is optimal (in the L2 sense) to perform a PCE w.r.t. the Jacobi polynomials as it exhibits an

L2 error of order O(N−
1
2 ) as opposed to O(N−

1
4 ) for the Laguerre and Hermite polynomials.

Despite the poor convergence rate of order O(N−
1
4 ), we exhibit an exponential factor of the

form e−
c2

4 (resp. e−
c
2 ) for the Hermite (resp. Laguerre) polynomials, ensuring a faster decrease

for large values of |c| (see Remark 3 for a precise discussion).
Regarding the optimal probabilistic transformation (see (1.7)), we consider the problem of

approximating the random 1c≤X where X
d
= U([0, 1]) and c ∈ (0, 1), and investigate the case

where p̃n(·) can be any COPS, see section 3.2.1. For a fixed N , we show both theoretically
(see Lemma 3.1) and numerically (see Figure 5(a)) that when c → 0 (extremely low values)
the smallest L2 error is either achieved by the Jacobi polynomials provided that its associated
parameters satisfy the constraints α < β − 1

2 , or the Hermite polynomials otherwise. Similarly
when c→ 1 (extremely large values), we demonstrate that either the Jacobi polynomials attain
the smallest error when β < α − 1

2 , or the Hermite and Laguerre polynomials which share the
same error order (see section 3.2.1). For no extreme values of c, we demonstrate that the optimal
transformation is attained with Jacobi polynomials with small parameters (see section 3.2).

Organization of the paper. In section 2, we start by recalling the main properties and
characterizations of OPS and COPS (see Theorem 2.1). We then derive an explicit PCE for the
COPS (see Proposition 2.1) when dealing with indicators functions of the form 1c≤X . We also
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provide three-term recurrence relations for each chaos expansion coefficient γn(c) (see Propo-
sition 2.2) which will be shown to be crucial for numerical applications. In section 2.3, local
and global estimates of the L2 truncation error (1.6) are provided when dealing with the COPS
(see Theorem 2.2–2.4) and illustrated in section 3.1. To assess the performance of one classical
orthogonal polynomial compared to another depending on the threshold parameter c, a precise
theoretical and numerical study is conducted in section 3, and we conclude in section 4. Proofs
are postponed to section 5.

Special functions ([31, Chapter 5]).

• C.d.f. of the standard normal distribution:

Φ(x) :=

∫ x

−∞

e−
t2

2

√
2π

dt, x ∈ R.

• Upper incomplete gamma and regularized lower incomplete gamma functions:

Γα(z) :=

∫ +∞

z
tα−1e−tdt, Gα(z) :=

1

Γα

∫ z

0
tα−1e−tdt, α > 0, z ≥ 0, (1.8)

and we write Γα := Γα(0) for the usual gamma function.

• Lower incomplete beta function and its regularized version:

Bα,β(x) :=

∫ x

0
tα−1 (1− t)β−1 dt, Bα,β(x) :=

Bα,β(x)

Bα,β
, α, β > 0, x ∈ [0, 1], (1.9)

and we write Bα,β := Bα,β(1) for the usual beta function. It is well known that the beta
function can be expressed in terms of the gamma function (see, e.g., [31, 5.12.1]):

Bα,β =
ΓαΓβ
Γα+β

. (1.10)

Probability distributions (see, e.g., [20, Chapters 17, 18] [21, Chapter 25]).

• The random variable X has a beta distribution with parameters α, β > 0, written X
d
=

Beta(α, β), if its c.d.f. is given by P (X ≤ x) = Bα,β(x).

• The random variable X has a gamma distribution with parameters α, β > 0, written

X
d
= Gamma(α, β), if its c.d.f. is given by P (X ≤ x) = Gα(βx). For any λ > 0, we have

λX
d
= Gamma

(
α, βλ

)
.

2 Orthogonal polynomials and polynomial chaos expansion

2.1 Reminders on orthogonal polynomials

We start by recalling results on orthogonal polynomials. General references are [34], [10], and for
extensive reviews of their characterizations and main properties see, e.g., [1] and [31, Chapter
18].
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Askey-scheme. In this work, we only focus on COPS, that is, continuous orthogonal poly-
nomials. Discrete orthogonal polynomials also exist when X is a discrete random variable (see,
e.g., [28]). The continuous and discrete orthogonal polynomials can be listed according to the
so-called Askey-scheme [3] of hypergeometric orthogonal polynomials. All of such polynomials
can be expressed in terms of hypergeometric functions pFq(·) and are listed according to their
free real parameters (see [31, Figure 18.21.1] and [23]). For the continuous (resp. discrete) or-
thogonal polynomials, the most general polynomials are the Wilson (resp. Racah) polynomials
which depend on four parameters. Then, the Continuous dual Hahn and Continuous Hahn (resp.
Hahn and Dual Hahn) with three parameters, the Meixner–Pollaczek and Jacobi polynomials
(resp. Meixner and Krawtchouk) with two parameters, the Laguerre polynomials (resp. Charlier)
with one parameter, and finally the Hermite polynomials.

Recurrence relation. A remarkable property of orthogonal polynomials is that they neces-
sarily solve a three-term recurrence relation of the form ([34, Theorem 3.2.1]):

pn+1(x) = (Anx+Bn) pn(x)− Cnpn−1(x), n ∈ N∗, (2.1)

where An, Bn, Cn are constants with An > 0, Cn > 0. Note that the converse is also true and
known as Favard’s Theorem.

Classical orthogonal polynomials set (COPS). In this work, we will consider a subclass of
continuous orthogonal polynomials commonly referred to as the classical orthogonal polynomials
set or COPS. These polynomials are the only ones to satisfy Rodrigues’ formula (2.2) and the
limit conditions (2.3), which will be essential to derive closed-form expressions and recurrence
relations for the chaos coefficients γn(·) (see Propositions 2.1 and 2.2). This motivates our choice
to focus on the COPS which can be completely characterized as follows.

Theorem 2.1. (see [1, section 5], [2, Theorem 1.2]) The set of orthogonal polynomials (pn(x) :
n ∈ N) associated with some measure ν(dx) = w(x)dx is said to be a COPS if and only if it
satisfies one of the following equivalent assertions:

1. For any n ∈ N, pn(·) satisfies a second order linear differential equation of the Sturm–
Liouville type:

F (x)
d2pn
dx2

(x) +G(x)
dpn
dx

(x) + λnpn(x) = 0,

where F and G are two polynomials with deg (F ) ≤ 2 and deg (G) = 1, and are both
independent of n, and λn is a constant independent of x.

2. The family of polynomials
(

dpn
dx (x), n ∈ N

)
forms also a COPS.

3. They all satisfy a Rodrigues’ type formula of the form:

pn(x) =
1

κnw(x)

dn

dxn
[F (x)nw(x)] , (2.2)

for some coefficients κn.

4. The weight function w (·) satisfies the following Pearson’s type differential equation

d

dx
[F (x)w(x)] = G(x)w(x). (2.3)

The only classical orthogonal polynomials are the Hermite, Laguerre (with parameter α >
−1), and the Jacobi (with parameters α, β > −1) orthogonal polynomials, for which some of
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the properties are gathered in Table 1 (see, e.g., [31]). One easily checks that the following limit
conditions hold for the COPS (with Iw = (a, b) defined in Table 1),

lim
x→a

w(x)F (x) = lim
x→b

w(x)F (x) = 0.

The Legendre polynomials are particular Jacobi polynomials with α = β = 0.

Name Hermite Laguerre Jacobi Legendre

Parameters α > −1 α, β > −1 α = β = 0

pn(x) Hen(x) L
(α)
n (x) P

(α,β)
n (x) Pn(x)

Iw = (a, b) (−∞,+∞) (0,+∞) (−1, 1) (−1, 1)

w(x) e−
x2

2√
2π

xαe−x

Γα+1

(1−x)α(1+x)β

2α+β+1Bα+1,β+1

1
2

ν N (0, 1) Gamma(α+ 1, 1) 1− 2Beta(α+ 1, β + 1) U(−1, 1)

p0(x) 1 1 1 1

p1(x) x 1 + α− x α+ 1 + (α+β+2)(x−1)
2 x

hn n! 1
n!

Γn+α+1

Γα+1

Γn+α+1Γn+β+1

(2n+α+β+1)Γn+α+β+1n!Bα+1,β+1

2
2n+1

An 1 − 1
n+1

(α+β+2n+1)(α+β+2n+2)
2(n+1)(α+β+n+1)

2n+1
n+1

Bn 0 2n+α+1
n+1

(α2−β2)(α+β+2n+1)
2(n+1)(α+β+n+1)(α+β+2n) 0

Cn n n+α
n+1

(α+n)(β+n)(α+β+2n+2)
(n+1)(α+β+n+1)(α+β+2n)

n
n+1

F (x) 1 x 1− x2 1− x2

G(x) −x α+ 1− x β − α− (α+ β + 2)x −2x

κn (−1)n n! (−2)nn! (−2)nn!

Table 1: Some properties for the classical orthogonal polynomials.

2.2 Chaos decomposition of the indicator function for the COPS

For the COPS, we show that the convergence (1.4)-(1.5) holds not only in L2 (ν) but also
pointwise except on c. Furthermore, all coefficients γn(·) admit a closed-form representation.

Proposition 2.1. Let (pn)n∈N be a COPS w.r.t. ν (dx) = w(x)dx, and let c ∈ Iw. Then,

∀x ∈ Iw \ {c} , 1c≤x =
+∞∑
n=0

γn(c)pn(x),

where the coefficients γn (·) have been defined in (1.4). Furthermore, for every n ≥ 2,

• If ν = N (0, 1),

γ0(c) = Φ (−c) , γ1(c) =
e−

c2

2

√
2π
, γn(c) =

e−
c2

2 Hen−1(c)

n!
√

2π
. (2.4)

• If ν = Gamma (α+ 1, 1),

γ0(c) =
Γα+1(c)

Γα+1
, γ1(c) = −c

1+αe−c

Γα+2
, γn(c) = −(n− 1)!

Γn+α+1
cα+1e−cL

(α+1)
n−1 (c). (2.5)

• If ν = 1− 2Beta (α+ 1, β + 1),

γ0(c) = Bα+1,β+1

(1− c
2

)
,
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γ1(c) =
α+ β + 3

(α+ 1) (β + 1)

(α+ 1)Bα+1,β+1

(
1−c

2

)
− (α+ β + 2) Bα+2,β+1

(
1−c

2

)
Bα+1,β+1

, (2.6)

γn(c) =
(2n+ α+ β + 1) Γn+α+β+1 (n− 1)!

2α+β+2Γn+α+1Γn+β+1
(1− c)α+1 (1 + c)β+1 P

(α+1,β+1)
n−1 (c).

For the reader’s convenience, we have specified the first two values for γn(·). They will serve for
the following proposition that provides a three-term recurrence relation for the chaos coefficients
γn(·). The main interest relies on the fact that the implementation of the metamodel (see
Proposition 2.1) may be computationally intensive.

Proposition 2.2 (Recurrence relation for the γn (·)). For every n ∈ N and for any COPS, the
following three-term recurrence relation holds for the parameters γn(c),

γn+2(c) = (Bn+1 +An+1c)
hn+1

hn+2
γn+1(c)− Cn+1

hn
hn+2

γn(c) +
hn+1

hn+2
An+1

∫ b

c
γn+1(x)dx. (2.7)

In particular, depending on the COPS, if ν = N (0, 1),

γn+2(c) =
c

(n+ 2)
γn+1(c)− n

(n+ 1)(n+ 2)
γn(c), (2.8)

or if ν = Gamma (α+ 1, 1) ,

γn+2(c) =
2n+ α+ 2− c
n+ α+ 2

γn+1(c)− n

n+ α+ 2
γn(c), (2.9)

or if ν = 1− 2Beta (α+ 1, β + 1),

γn+2(c) = D (n, α, β, c) γn+1(c) + E (n, α, β) γn(c), (2.10)

where

D(n, α, β, c) =
(α+ β + n+ 2)(α+ β + 2n+ 5) [(α− β)(α+ β + 2) + c(α+ β + 2n+ 2)(α+ β + 2n+ 4)]

2(α+ n+ 2)(β + n+ 2)(α+ β + n+ 3)(α+ β + 2n+ 2)
,

E(n, α, β) = − n(α+ β + n+ 1)(α+ β + n+ 2)(α+ β + 2n+ 4)(α+ β + 2n+ 5)

(α+ n+ 2)(β + n+ 2)(α+ β + n+ 3)(α+ β + 2n+ 1)(α+ β + 2n+ 2)
.

Remark 1. For the Legendre polynomials, setting α = β = 0 in (2.6) and (2.10), we have the
simplifications

γn+2(c) =
(2n+ 5)c

n+ 3
γn+1(c)− (2n+ 5)n

(n+ 3) (2n+ 1)
γn(c). (2.11)

γ0(c) =
1

2
(1− c) , γ1(c) =

3

4

(
1− c2

)
, γn(c) =

2n+ 1

4n

(
1− c2

)
P

(1,1)
n−1 (c). (2.12)

Remark 2. Suppose that, instead of 1c≤X , we are interested in deriving a PCE for the more
general random variable `(X)1c≤X , for a given function `. Then, the chaos coefficients Γ`,n(c)
for `(X)1c≤X can be expressed as linear combinations of γn(c) and admit a semi-closed form
(see [7, Chapter 4, section 4.2.1] for a detailed discussion).

2.3 L2 error

In this section, we provide estimates for the L2 error between 1c≤X and
∑N

n=0 γn(c)pn(X) which
is given by (see (1.6)),

EN (c) =

∣∣∣∣∣
+∞∑

n=N+1

hnγn(c)2

∣∣∣∣∣
1
2

.

We will explicit the dependence of the basis for the L2 error, i.e., we write EHe
N (·) for the Hermite

polynomials, ELe
N (·) for the Legendre polynomials, EJ

N (·) for the Jacobi polynomials and ELa
N (·)

for the Laguerre polynomials.
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Theorem 2.2 (Estimates for the Hermite polynomials). There exists a universal constant A > 0
such that for every N ∈ N∗,

EHe
N (c) ≤ Ae−

c2

4



N−
1
4 , |c| ∈ [0, (4N)

1
2 ], (2.13)(√N

|c|
) 1

4N−
1
12 , |c| ∈ [(2N)

1
2 , N

39
14 ], (2.14)

( |c|√
N

) 1
3N−

17
12 , |c| ∈ [N

39
14 ,+∞). (2.15)

Theorem 2.3 (Estimates for the Laguerre polynomials). Let 0 < η < 4. Then, there exists a
constant A > 0 (depending on η and α) such that for every N ∈ N∗,

ELa
N (c) ≤ Ae−

c
2


( c
N

)α
2

+ 1
4N

α
2 , c ∈ (0, (4− η)N ], (2.16)( c

N

)α
2

+ 5
12N

α
2

+ 1
6 , c ∈ [2N,+∞). (2.17)

Theorem 2.4 (Estimates for the Jacobi polynomials). For any α, β > −1, there exists a con-
stant A > 0 (independent of α and β) such that for every N ∈ N∗,

EJ
N (c) ≤ A

(
2 +

√
(α+ 1)2 + (β + 1)2

2α+βBα+1,β+1

) 1
2

(1− c)
α
2

+ 1
4 (1 + c)

β
2

+ 1
4 N−

1
2 , c ∈ [−1, 1] . (2.18)

Remark 3. Let us comment on each of the estimates.
First, for a given value of c (see estimates (2.13), (2.16), (2.18)), we retrieve the expected

convergence rate w.r.t. N aforementioned in the introduction (paragraph on background results).
For a probability measure ν with infinite support Iw = R or Iw = R+ (Hermite or Laguerre

polynomials), the L2 error converges as N−
1
4 , while for the case with finite support (Jacobi

polynomials), it becomes N−
1
2 .

Second, for a given value of N , we get an accurate estimate on the dependence of the error
w.r.t. c.

• For Hermite or Laguerre polynomials, we obtain an exponential term in c which decays
fastly as c goes in the tails of the distribution ν. This explains well the accurate results in
the numerical experiments of [8]: these approximations were used for stochastic but large
values of c, and despite the low values of N , the exponential factor helps much in getting
a small global error.

• For Jacobi polynomials, we obtain a polynomial factor which goes to 0 as c = ±1 as soon
as α, β > −1

2 : this is the analog of the exponential term of the Hermite/Laguerre cases.
The factor may explode in the case α or β < −1

2 : this is not surprising since in such a
case, the measure ν is concentrated at one or/and the other ending points of the interval
Iw = (−1, 1).

• In all cases, the L2 truncation error goes to 0 for extreme values of c, that is when 1c≤X = 1
or 0.

The interplay between c and N is detailed. This is potentially useful when c is taken large,
as a function of N .

• For Jacobi polynomials, the dependence on c and N is separable, see (2.18), it is presum-
ably due to the property of compact support of the underlying measure ν.
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• For Hermite polynomials, Theorem 2.2 exhibits different regimes for EHe
N (c)e

c2

4 depending

on the relative value of c and N . More precisely, when |c| ≤
√

4N , EHe
N (c)e

c2

4 decreases as

N−
1
4 . When |c| is larger than

√
2N , different regimes occur: in any case the exponential

term shows that EHe
N (c) is exponentially small but our estimates gives a further refinement

(beyond the exponential scale with a polynomial scale in c and N). The jump in the
polynomial scale comes from the abrupt change of behavior of Hermite polynomial HeN (c)
around its maximum value which is attained around c ≈

√
4N (see the estimates of Lemma

5.2).

• For Laguerre polynomials, we obtain also a refined estimate beyond the exponential scale,
i.e., in the polynomial scale. Here again, the jump in the polynomial term is due to the

rapid change of behavior of Laguerre polynomial L
(α)
N (c) around its maximum achieved at

c ≈ 2N .

As opposed to the estimates in Theorem 2.3 for the Laguerre polynomials, note that the
constant in front of the estimates for the Jacobi polynomials in Theorem 2.4 does not depend
on the Jacobi parameters α and β.

For the Legendre polynomials, setting α = β = 0 in (2.18), there exists a universal constant

B > 0 such that ELe
N (c) ≤ B

(
1− c2

) 1
4 N−

1
2 , c ∈ [−1, 1] .

For a fixed c ∈ [−1, 1] and N ≥ 1, let us comment on the behavior of estimate (2.18)

for large values of α, β. Set F (α, β) :=

(
2+
√

(α+1)2+(β+1)2

2α+βBα+1,β+1

) 1
2

for α, β > −1 and recall that

Γx ∼
x→+∞

e−xxx(2π
x )

1
2 (see [31, 5.11.3]). For a fixed α > −1, we readily obtain F (α, β) ∼

β→+∞
1

2
α
2 Γ

1
2
α+1

β
α
2 +1

2
β
2

→ 0, where we have used the identity (1.10). As F is symmetric, the same limit

holds for a fixed β > −1 and large α. However, when α = β a similar study shows F (α, α) ∼
α→+∞

(2α)
3
4

π
1
4
→ +∞. Though the L2 error decreases as N−

1
2 , the multiplicative constant can be large

when α, β are large. In fact, we can obtain another estimate for EJ
N (c) with a multiplicative

constant which is uniform in α, β but with a convergence rate N−
1
4 instead of N−

1
2 . Evoking

[19, Theorem 1.1] instead of [27, Theorem 1] in the proof of Theorem 2.4, one may prove that
there exists a universal constant A > 0 such that

EJ
N (c) ≤ A(1− c)

α
2

+ 1
4 (1 + c)

β
2

+ 1
4 N−

1
4 , c ∈ [−1, 1] (2.19)

where the order N−
1
4 is known to be sharp when α, β → +∞.

3 Numerical tests

3.1 L2 errors comparison w.r.t. N for fixed c

Let us fix c. To illustrate the estimates found in Theorems 2.2–2.4 for the L2 error, we wish
to retrieve the order O

(
N−

1
2

)
for the Jacobi polynomials and O

(
N−

1
4

)
for the other orthogo-

nal polynomials. In Figure 1, we then plot log (EN (c)) w.r.t. log (N) for different fixed values
of c and truncation parameters N ∈ [1, 30]. Note that even if we have explicit formulas for
all L2 errors associated to the COPS, we do not use them as they entail numerical instabil-
ity when evaluating polynomials at very high degree n and large values for c. To overcome
this issue, we proceed with a Monte Carlo simulation and directly estimate the expectation

E
[∣∣∣1c≤X −∑N

n=0 γn(c)pn(X)
∣∣∣2] 1

2

in (1.6) with M = 5 × 105 samples. We do not report the

confidence interval as the error is negligible (less than 0.1% in relative error).
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(a) (b)

(c) (d)

(e) (f)

Figure 1: log EN (c) w.r.t. logN for the COPS for different parameters c.
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For the Hermite (Figure 1(a)) and Laguerre (Figures 1(c) and 1(d)) polynomials, we retrieve

the error of order N−
1
4 exhibited in (2.13) and (2.16). This seems to support the idea that the

order of our estimates is tight, i.e., the speed in N for the error upper bound is optimal. To
prove that the error is precisely asymptotically equivalent to Cst × N−

1
4 seems to be hopeless

for Laguerre polynomials since the error oscillates as N increases: our error upper bound seems
to be the best result we can achieve. Similarly, for Jacobi (Figure 1(e)) with no-extreme values
of α, β, and Legendre (1(b)) polynomials, the numerical results confirm that the error behaves

as N−
1
2 . For large α and β, Figure 1(f) seems to indicate an error of order N−

1
4 and illustrates

the competition between large values of N and α, β (see Remark 3 and (2.19)).

3.2 Best selection of COPS, L2 errors comparison w.r.t. the quantile q

In this section, we are concerned with the choice of COPS one should consider when performing
the PCE of 1c≤X w.r.t. X, while playing with the degree of freedom of a continuous increasing
transformation T , see the introduction. Referring to (1.7), we have 1c≤X = 1T (c)≤T (X) = and

1c≤X =



∑
n≥0 γ

He
n (THe(c))Hen(THe(X)) if THe(X)

d
= N (0, 1),∑

n≥0 γ
La
n (TLa(c))L

(α)
n (TLa(X)) if TLa(X)

d
= Gamma (α+ 1, 1),∑

n≥0 γ
J
n(T J(c))P

(α,β)
n (T J(X)) if T J(X)

d
= 1− 2Beta (α+ 1, β + 1),∑

n≥0 γ
Le
n (TLe(c))Pn(TLe(X)) if TLe(X)

d
= U (−1, 1).

The L2 error between the left hand side and the truncated sum (at order N) of the right hand
side writes respectively as EHe

N

(
THe(c)

)
, ELa
N

(
TLa(c)

)
, EJ
N

(
T J(q)

)
, ELe
N

(
TLe(c)

)
. To get easily

interpretable results, we choose X
d
= U (0, 1) so that c =: q ∈ (0, 1) reads as a quantile. The

quantities T (c) become respectively

cHe(q) := Φ−1(q) ∈ (−∞,+∞) , cLa(q) := G−1
α+1(q) ∈ (0,+∞) ,

cLe(q) := 2q − 1 ∈ (−1, 1) , cJ(q) := 2B−1
α+1,β+1(q)− 1 ∈ (−1, 1) .

We seek to compare EHe
N (cHe(q)) , ELa

N (cLa(q)) , EJ
N (cJ(q)) , ELe

N (cLe(q)) for all q ∈ (0, 1), in
order to assess the best choice of COPS for each level of quantile q. We will see that depending
on the value q, it might be more adequate (in terms of L2 error) to decompose on one basis
compared to another. In all our numerical experiments, we choose M = 5 × 105 Monte Carlo
samples for evaluating the L2 error, plot the associated confidence interval, and take 20 evenly-
spaced quantiles q ∈ [0.05, 0.95]. Note that, due to the high number of Monte Carlo samples,
the confidence intervals are almost indistinguishable in all of our experiments.

Figure 2: L2 error for the Jacobi polynomials w.r.t. q ∈ (0, 1) for N = 40.

12



Figure 3: L2 error for the COPS w.r.t. q ∈ (0, 1) and for N ∈ {20, 30, 40, 50}.

From (2.18), recall that EJ
N (cJ(q)) ≤ A(α, β)(1 − cJ(q))

α
2

+ 1
4 (α, β)(1 + cJ(q))

β
2

+ 1
4N−

1
2 , for

every q ∈ [0, 1] and where (α, β) 7→ A(α, β) is a function (independent of q and N) exploding
when α, β → +∞. Consequently, for a fixed N and assuming that our estimate (2.18) is
tight, we expect q 7→ EJ

N (cJ(q)) to be constant when α = β = −1
2 (Chebychev polynomials of

the first kind, see, e.g., [31, Table 18.3.1]), to increase when α, β increase simultaneously, to
explode when cJ(q) → 1 ⇐⇒ q → 1 for α < −1

2 and/or when cJ(q) → −1 ⇐⇒ q → 0
for β < −1

2 . Such behaviors are numerically confirmed by Figure 2 in which we plot the L2

errors for the Jacobi polynomials for different values of α, β. More precisely, the L2 error is
constant for all values of q when α = β = −1

2 (green line with the squares), explodes when
α = −0.7, β = 0.3 when q approaches 1 (red line with the stars), and increases when α, β
increase simultaneously (compare the Legendre polynomials in yellow with the crosses to the
Jacobi polynomials with α = 10, β = 12 in indigo with the diamonds). As a conclusion, note
that the Legendre polynomials are not necessarily the best orthogonal polynomials, that the
Jacobi polynomials for α→ −1 (resp. β → −1) perform well for low (resp. large) quantiles, and
that taking large values of α, β is never the optimal choice.

In Figure 3, we plot the L2 error for the Jacobi (with α = β = 0 and α = β = −0.5, and
α = 10, β = 12), Laguerre (α = 0 and α = 3), and Hermite polynomials for N ∈ {20, 30, 40, 50}.
From Theorems 2.2–2.4 and their respective errors order in N , we expect the Jacobi polynomials
to provide the smallest L2 error compared to the Hermite and Laguerre polynomials for no-
extreme values of q, i.e., 0� q � 1. This is precisely the behavior observed in Figure 3. Notice
also that the L2 errors for the Hermite and Laguerre polynomials are very close. Consequently,
in view of Figure 3, using Jacobi polynomials with small α, β is undoubtedly the best choice.

To assess the tightness in q and N of the estimates found in Theorems 2.2–2.4, we also
plot the ratio between the L2 error and the corresponding upper bound for every orthogonal

13



Figure 4: Ratio between the L2 error and the error estimates of Theorems 2.2–2.4 w.r.t. the
quantile q ∈ (0, 1) for different truncation parameters N ∈ {20, 30, 40, 50}.

polynomial, i.e., we plot the functions

q 7→ e
cHe(q)2

4 N
1
4EHe

N (cHe(q)) ,

q 7→ cLa(q)−
α
2
− 1

4 e
cLa(q)

2 N
1
4ELa

N (cLa(q)) ,

q 7→ (1− cJ(q))−
α
2
− 1

4 (1 + cJ(q))−
β
2
− 1

4 N
1
2EJ

N (cJ(q)) ,

q 7→
(
1− cLe(q)

2
)− 1

4 N
1
2ELe

N (cLe(q)) .

We expect these ratios to be quite constant for all quantiles q ∈ (0, 1) and all N . Note that for
the Hermite (resp. Laguerre) polynomials, we use estimate (2.13) (resp. (2.16)) being valid for

|c| ∈
[
0, (4N)

1
2

]
(resp. c ∈ [0, 3N ]). Actually, if we set a small truncation parameter N = 5,

the above thresholds in N correspond to a normal quantile Φ(20
1
2 ) ≈ 0.999996 and a gamma

quantile Gα+1(15) ≈ 0.999995 where we have chosen α = 1. This means that for all usual
quantiles, estimates (2.13) and (2.16) are to be used. From Figure 4, we clearly observe that
all ratios remain quite constant w.r.t. q and N , confirming that all our theoretical estimates of
Theorems 2.2–2.4 are tight in both q and N .

3.2.1 Extreme quantiles

The Chebychev polynomials of the first kind (Jacobi with α = β = −1
2) are among the most

accurate orthogonal polynomials for not-too-extreme values of q. As displayed in Figure 3,
this seems different when dealing with extremely small (q → 0+) or large (q → 1−) quantiles.
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Assuming that all estimates exposed in Theorems 2.2–2.4 are tight, the next lemma provides a
precise statement of the performance of every polynomial for extreme quantiles, i.e., we give the
exact asymptotics of the upper-bounds depending on q of the L2 errors for extreme quantiles.
When q → 1−, we have to use (2.15) valid when cHe(q)→ ±∞ and (2.17) valid when cLa(q)→
+∞.

Lemma 3.1 (Asymptotic expansions for the upper-bounds of the L2 errors for extreme quan-
tiles). For the Hermite polynomials, we have

|cHe(q)|
1
3 e−

cHe(q)2

4 ∼

{
2

2
3π

1
4 |ln q|

5
12 q

1
2 , (q → 0+), (3.1)

2
2
3π

1
4 |ln(1− q)|

5
12 (1− q)

1
2 , (q → 1−). (3.2)

For the Laguerre polynomials, we have

cLa(q)
α
2

+ 1
4 e−

cLa(q)

2 ∼
q→0+

Γ
2α+1

4(α+1)

α+2 q
2α+1

4(α+1) , (3.3)

cLa(q)
α
2

+ 5
12 e−

cLa(q)

2 ∼
q→1−

Γ
1
2
α+1(1− q)

1
2 |ln(1− q)|

5
12 . (3.4)

For the Jacobi polynomials, we have

(1− cJ(q))
α
2

+ 1
4 (1 + cJ(q))

β
2

+ 1
4 ∼ 2

α+β+1
2

((α+ 1)Bα+1,β+1q)
2β+1

4(α+1) , (q → 0+), (3.5)

((β + 1)Bβ+1,α+1(1− q))
2α+1

4(β+1) , (q → 1−). (3.6)

Remark 4. To avoid any confusion, denote αJ, βJ (resp. αLa) the parameters associated with
the Jacobi (resp. Laguerre) polynomials.

From (3.5) and (3.6), note that the asymptotic expansion may explode when βJ < −1
2 for

q → 0+ and αJ < −1
2 for q → 1− (the distribution is either concentrated on the left-hand side

or the right-hand side). Similarly for Laguerre polynomials, from (3.3) the expansion explodes
when αLa < −1

2 for q → 0+.

B Small quantiles q → 0+. From Lemma 3.1, we compare q
2βJ+1

4(αJ+1) , q
2αLa+1

4(αLa+1) , q
1
2 to under-

stand which orthogonal polynomial gives asymptotically the smallest error. As the inequality
2αLa+1

4(αLa+1) <
1
2 is always satisfied since αLa > −1, we have q

1
2 < q

2αLa+1

4(αLa+1) , and so the L2 error for

the Hermite polynomials is always smaller than that of Laguerre polynomials. The L2 smallest
error is then asymptotically attained by

• the Jacobi polynomials when 2βJ+1
4(αJ+1) >

1
2 ⇐⇒ αJ < βJ − 1

2 ,

• the Hermite polynomials when αJ > βJ − 1
2 ,

• both the Hermite and Jacobi polynomials when αJ = βJ − 1
2 .

Surprisingly, notice that the Jacobi polynomials can give the highest L2 errors when 2βJ+1
αJ+1 <

2αLa+1
αLa+1 .

B Large quantiles q → 1−. From (3.2) and (3.4), we note that both Laguerre and Hermite

polynomials admit the same order in q. We thus need to compare (1 − q)
2αJ+1

4(βJ+1) and (1 − q)
1
2 .

The L2 smallest error is then asymptotically attained by

• the Jacobi polynomials when 2αJ+1
4(βJ+1) >

1
2 ⇐⇒ βJ < αJ − 1

2 ,

• the Hermite and Laguerre polynomials when βJ > αJ − 1
2 ,

• all polynomials when βJ = αJ − 1
2 (up to some logarithmic error terms).
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Unsurprisingly, from the symmetry of (2.18), the condition for the Jacobi polynomials to provide
the smallest L2 error for large quantiles corresponds to the same condition that of low quantiles
by swapping αJ and βJ.

To illustrate Lemma 3.1, let us plot the L2 error for small quantiles, i.e., q ∈
(
10−4, 10−3

)
. We

consider the L2 errors for the Hermite polynomials (blue with the points), Laguerre polynomials
with αLa = 3 (magenta with the crosses), and for Jacobi polynomials with two different sets of

parameters α
(1)
J = 0, β

(1)
J = 3 (red with the stars), α

(2)
J = 3, β

(2)
J = 0 (green with the squares).

The results are reported in Figures 5(a)-5(b). We take N = 50 and M = 5 × 105 Monte Carlo
samples and plot the associated confidence interval for each L2 error.

As α
(1)
J < β

(1)
J − 1

2 ⇐⇒ 0 < 5
2 , the Jacobi polynomials with parameters α

(1)
J , β

(1)
J should

provide the smallest error and this is what is observed in Figure 5(a). As α
(2)
J > β

(2)
J − 1

2 ⇐⇒

3 > −1
2 and

2β
(2)
J +1

α
(2)
J +1

< 2αLa+1
αLa+1 ⇐⇒ 1

4 <
7
4 , the Jacobi polynomials with parameters α

(2)
J , β

(2)
J

should give the worst L2 error compared to the Laguerre and Hermite polynomials, and again
this is what is observed in Figure 5(a). Notice also that the L2 error for Hermite polynomials is
always smaller than that of Laguerre.

For large quantiles, we take q ∈
(
1− 10−3, 1− 10−4

)
. Conducting a similar analysis, we

should observe that the Jacobi polynomials parameters α
(1)
J , β

(1)
J should give the worst L2 error,

the ones with α
(2)
J , β

(2)
J the lowest, and very close L2 errors for both Hermite and Laguerre

polynomials. This is precisely the behaviors exhibited in Figure 5(b).

(a) Small quantiles (b) Large quantiles

Figure 5: L2 error for the COPS w.r.t. small quantiles q ∈
(
10−4, 10−3

)
(left) and large quantiles

q ∈
(
1− 10−3, 1− 10−4

)
(right) for a fixed N = 50.

The above Figure confirms again the tightness of our estimates displayed in Theorem 2.2–2.4.

4 Conclusion

We have proposed a thorough comparative study of polynomial-type chaos expansions for in-
dicator functions 1c≤X for a given parameter c and scalar random variable X associated with
a COPS. Pointwise convergence of the Nth order chaos

∑N
n=0 γn(c)pn(X) is proved along with

accurate global and local estimates for the resulting L2 error, as a function of N and c: the
tightness of error bounds is confirmed by numerous numerical experiments.

We have also shown that the optimal probabilistic transformation for 1c≤X is achieved with
Jacobi polynomials for no large α, β when c is not too extreme. For extremely low values of
c, the optimal probabilistic transformation is achieved with Jacobi polynomials provided that
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α < β − 1
2 or the Hermite polynomials otherwise. For extremely large values of c, it is achieved

with Jacobi polynomials provided that β < α − 1
2 , or with Laguerre and Hermite polynomials

otherwise. This sheds a new light on which probability distribution to consider when performing
a polynomial chaos expansion.

5 Proofs

Standard result. We will make extensive use of the following tail asymptotic expansion:

+∞∑
n=N

1

nm
∼

N→+∞

1

m− 1

1

Nm−1
, for all m > 1. (5.1)

5.1 Proof of Proposition 2.1

The L2 (ν) equality in (1.4) results from the denseness of (pn)n∈N in L2 (ν), implying that (1.4)
holds ν almost everywhere. For the COPS, it is possible to obtain a stronger result, namely,
pointwise convergence. Using asymptotic expansions in the Christoffel–Darboux representation
of (1.5), Uspensky [35] managed to calculate this limit in the case of Laguerre or Hermite
polynomials. In particular when f ∈ L2 (ν), f is absolutely integrable on any finite interval, and
has bounded variation in the neighborhood of x, then

+∞∑
n=0

γn(f)pn(x) =
f(x+) + f(x−)

2
.

Taking f : x 7→ 1{c≤x}, the above pointwise limit is f(x) for every x ∈ Iw \ {c}, and 1
2 if x = c

(Gibb’s phenomenon). An overview of those methods can also be found in [34, 32]. Concern-
ing Jacobi polynomials, to the best of our knowledge, there is no such a result. However, in
view of [34, Theorem 9.1.2], we simply have to show that the Fourier series of the function

ϕ : θ ∈ [−π, π] 7→ (1− cos (θ))
2α+1

4 (1 + cos (θ))
2β+1

4 1[c,1](cos (θ)) converges for every θ such that
cos(θ) 6= c. Since ϕ is locally Hölder (away from the above discontinuity point), this a conse-
quence of the Dini criterion (see [40, Theorem 6.1., p.52]), and the pointwise convergence holds
for the Jacobi polynomials for x ∈ (−1, 1) \ {c}. We now focus on establishing the announced
formulas for the γn(·).

B Coefficients γn(c) for the Hermite polynomials. From (1.4), we have first

γ0(c) =
1

h0

∫ +∞

c
He0(x)

e−
x2

2

√
2π

dx = Φ (−c) , γ1(c) =
1

1!

∫ +∞

c
x
e−

x2

2

√
2π

dx =
e−

c2

2

√
2π
,

and for every n ∈ N∗,

γn(c) =
(−1)n

n!
√

2π

∫ +∞

c

dn

dxn

(
e−

x2

2

)
dx =

(−1)n−1

n!
√

2π

dn−1

dxn−1

(
e−

x2

2

)∣∣∣∣
x=c

=
e−

c2

2 Hen−1(c)

n!
√

2π
.

B Coefficients γn(c) for the Laguerre polynomials. By definition,

γ0(c) =
1

0!

∫ +∞

c
1× xαe−x

Γα+1
dx = Gα+1(c),

and a direct integration gives

γ1(c) =
1

Γα+2

∫ +∞

c
(1 + α− x)xαe−xdx = −c

1+αe−c

Γα+2
.
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From the identity (see [31, 18.9.24]),

d

dx

(
xαe−xL(α)

n (x)
)

= (n+ 1)xα−1e−xL
(α−1)
n+1 (x), (5.2)

we infer that

γn(c) =
n!

Γn+α+1

∫ +∞

c
L(α)
n (x)xαe−xdx = −(n− 1)!

Γn+α+1
cα+1e−cL

(α+1)
n−1 (c).

B Coefficients γn(c) for the Jacobi polynomials. As P
(α,β)
0 (x) = 1 and h0 = 1 (see Table 1 for

the definition of hn), we have first,

γ0(c) =
2−α−β−1

Bα+1,β+1

∫ 1

c
(1− x)α (1 + x)β dx = Bα+1,β+1

(
1− c

2

)
.

Similarly, using that P
(α,β)
1 (x) = (α+ 1) + (α+ β + 2) (x−1)

2 , we obtain

h1γ1(c) = (α+ 1)γ0(c)− 2−α−β−2 (α+ β + 2)

Bα+1,β+1

∫ 1

c
(1− x)α+1 (1 + x)β dx

=
(α+ 1)Bα+1,β+1

(
1−c

2

)
− (α+ β + 2) Bα+2,β+1

(
1−c

2

)
Bα+1,β+1

,

hence the expression for γ1(c) using that h1 =
Γα+2Γβ+2

(α+β+3)Γα+β+2Bα+1,β+1
= (α+1)(β+1)

α+β+3 . From the

identity (see [31, 18.9.16]),

d

dx

[
(1− x)α (1 + x)β P(α,β)

n (x)
]

= −2(n+ 1) (1− x)α−1 (1 + x)β−1 P
(α−1,β−1)
n+1 (x), (5.3)

we obtain:

γn(c) =
1

hn

∫ 1

c
P(α,β)
n (x)w(x)dx

=
(2n+ α+ β + 1) Γn+α+β+1 (n− 1)!

2α+β+2Γn+α+1Γn+β+1
(1− c)α+1 (1 + c)β+1 P

(α+1,β+1)
n−1 (c). (5.4)

5.2 Proof of Proposition 2.2

First notice that for any classical orthogonal polynomial, the following limit holds

x
dn

dxn
[
F (x)n+1w(x)

]
−−−→
x→b

0, (5.5)

where the polynomial F is defined in Theorem 2.1. The limit (5.5) holds for the Hermite and
Laguerre polynomials, for which b = +∞, thanks to the exponential factor of their weight func-
tion w(·) which converges to 0 faster than any polynomial at +∞. For the Jacobi polynomials,
combining (5.3),

d

dx

[
(1− x)α+1 (1 + x)β+1 P(α+1,β+1)

n (x)
]

= −2(n+ 1) (1− x)α (1 + x)β P
(α,β)
n+1 (x),

along with Rodrigues’ formula (2.2), we infer that

dn+1

dxn+1

[(
1− x2

)n+1 (1− x)
α

(1 + x)
β

2α+β+1Bα+1,β+1

]
=

(−2)
n+1

(n+ 1)!

2α+β+1Bα+1,β+1
(1− x)

α
(1 + x)

β
P
(α,β)
n+1 (x)

=
(−2)

n
n!

2α+β+1Bα+1,β+1

d

dx

[
(1− x)

α+1
(1 + x)

β+1
P(α+1,β+1)
n (x)

]
.
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Integrating the previous identity from −1 to x, and observing that the constant terms are zero
on both sides, we conclude that

dn

dxn
[
F (x)n+1w(x)

]
=

(−2)n n!

2α+β+1Bα+1,β+1
(1− x)α+1 (1 + x)β+1 P(α+1,β+1)

n (x) −−−→
x→1

0.

Now, from the three-term recurrence relation (2.1), we have

γn+2(c) =
1

hn+2
E [1c≤Xpn+2(X)]

=
1

hn+2
E [1c≤X ((An+1X +Bn+1) pn+1(X)− Cn+1pn(X))]

= Bn+1
hn+1

hn+2
γn+1(c)− Cn+1

hn
hn+2

γn(c) +An+1
1

hn+2
E [1c≤XXpn+1(X)] .

Besides, an integration by parts along with (2.2), and (5.5) give

E [1c≤XXpn+1(X)] =

∫ b

c
xpn+1(x)w(x)dx

=
1

κn+1

∫ b

c
x

dn+1

dxn+1

[
F (x)n+1w(x)

]
dx

= − 1

κn+1

(
c

dn

dxn
[
F (x)n+1w(x)

]∣∣∣∣
x=c

+

∫ b

c

dn

dxn
[
F (x)n+1w(x)

]
dx

)
.

Now, integrating the identity (2.2), i.e.

κn+1pn+1(x)w(x) =
dn+1

dxn+1

[
F (x)n+1w(x)

]
(5.6)

from x to b, and using (5.5), we infer that

κn+1

∫ b

x
pn+1(t)w(t)dt︸ ︷︷ ︸

=hn+1γn+1(x)

= − dn

dxn
[
F (x)n+1w(x)

]
.

All in all, we get that

E [1c≤XXpn+1(X)] = hn+1

(
cγn+1(c) +

∫ b

c
γn+1(x)dx

)
,

and obtain (2.7). Hence, to derive the recurrence relation for the COPS, one only needs to

express
∫ b
c γn+1(x)dx in terms of γn (c) and γn+1 (c) .

B Hermite polynomials. As b = +∞, from d
dx

(
e−

x2

2 Hen(x)
)

= −e−
x2

2 Hen+1(x) (see [31,
18.9.28]), we have first∫ +∞

c
γn+1(x)dx = − 1

(n+ 1)!
√

2π

∫ +∞

c

d

dx

(
e−

x2

2 Hen−1(x)

)
dx =

γn(c)

n+ 1
.

Then, from the relations (see Table 1),

(Bn+1 +An+1c)
hn+1

hn+2
=

c

n+ 2
,

hn+1

hn+2

An+1

n+ 1
− Cn+1

hn
hn+2

= − n

(n+ 1)(n+ 2)
,

and (2.7), we obtain (2.8).
B Laguerre polynomials. Again b = +∞ and we explicit the dependence on α and, with a slight
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abuse of notation, write γn(c, α) := γn(c). From (2.5), (5.2), the relation Γx+1 = xΓx for x > 0,
and the identity ([31, 18.9.14]),

xL
(α+2)
n−1 (x) = −nL(α+1)

n (x) + (n+ α+ 1) L
(α+1)
n−1 (x),

we have ∫ +∞

c
γn+1 (x, α) dx = − n!

Γn+α+2

∫ +∞

c
xα+1e−xL(α+1)

n (x)dx

= −(n− 1)!

Γn+α+2

∫ +∞

c

d

dx

(
xα+2e−xL

(α+2)
n−1 (x)

)
dx

=
(n− 1)!

Γn+α+2
cα+2e−cL

(α+2)
n−1 (c)

=
(n− 1)!

Γn+α+2
cα+1e−c

(
−nL(α+1)

n (c) + (n+ α+ 1) L
(α+1)
n−1 (c)

)
= γn+1(c, α)− Γn+α+1

Γn+α+2
(n+ α+ 1) γn(c, α)

= γn+1(c, α)− γn(c, α).

Whence from the identities (see Table 1),

(Bn+1 +An+1(1 + c))
hn+1

hn+2
=

2n+ α+ 2− c
n+ α+ 2

, −hnCn+1 + hn+1An+1

hn+2
= − n

n+ α+ 2
,

and (2.7), we obtain (2.9).
B Jacobi polynomials. We explicit the dependence in both α and β, and write γn(c, α, β) :=
γn(c). We first define the new function

C(n, α, β) :=
(2n+ α+ β + 1) Γn+α+β+1 (n− 1)!

2α+β+2Γn+α+1Γn+β+1
, (5.7)

such that, from (2.6), γn(c, α, β) = C(n, α, β)(1−c)α+1(1+c)β+1P
(α+1,β+1)
n−1 (c). From the identity

[31, 18.9.16],

d

dx

(
(1− x)α+2(1 + x)β+2P

(α+2,β+2)
n−1 (x)

)
= −2n(1− x)α+1(1 + x)β+1P(α+1,β+1)

n (x)

and C(n+ 1, α, β) = C(n, α+ 1, β + 1) 4n
n+α+β+2 , we obtain that∫ 1

c
γn+1(x, α, β)dx = C(n+ 1, α, β)

∫ 1

c
− 1

2n

d

dx

(
(1− x)α+2(1 + x)β+2P

(α+2,β+2)
n−1 (x)

)
dx

=
2

2 + n+ α+ β
γn(c, α+ 1, β + 1). (5.8)

Although the above identity is simple, once plugged in (2.7), it exhibits a coupling between the
γn for different α, β which makes the computation heavier. Alternatively, we want to rewrite
the last term γn(c, α + 1, β + 1) in terms of γn(c, α, β) and γn+1(c, α, β). To do so, we need to

express P
(α+2,β+2)
n−1 in terms of P

(α+1,β+1)
n−1 and P

(α+1,β+1)
n . Combining [31, 18.9.15–17], we have

1

2
(2n+ 2 + α+ β) (n+ α+ β + 3)

(
1− x2

)
P

(α+2,β+2)
n−1 (x)

= n (α− β − (2n+ 2 + α+ β)x) P(α+1,β+1)
n (x) + 2 (n+ α+ 1) (n+ β + 1) P

(α+1,β+1)
n−1 (x),
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and we obtain (after some simplifications1),

γn(c, α+ 1, β + 1) =
(α− β − (2n+ α+ β + 2) c) (n+ α+ β + 2)

2 (2n+ α+ β + 2) (n+ α+ β + 3)
γn+1(c, α, β)

+
(α+ β + n+ 1) (α+ β + n+ 2) (α+ β + 2n+ 3)

(α+ β + n+ 3) (α+ β + 2n+ 1) (2n+ α+ β + 2)
γn(c, α, β).

Combining Table 1, (5.8), and (2.7), we obtain after some standard simplifications (2.10).

5.3 Proof of Theorem of 2.2

In light of (2.4), the L2 error for the Hermite polynomials writes as

EHe
N (c) =

(
+∞∑
n=N

hn+1γn+1(c)2

) 1
2

= e−
c2

4

 +∞∑
n=N

e−
c2

2 He2
n(c)

2π(n+ 1)!

 1
2

.

We start with some local estimates for the Hermite polynomials.

Lemma 5.1 ([34, Theorem 8.91.3]). Let k ∈ R, c0 > 0 and 0 < η < 4. Then, there exist positive
constants B1 and B2 (which depend on c0, k, and η) such that for every n ∈ N∗,

max
c0≤c

cke−
c2

2 He2
n (c)

n!
≤ B1n

S1 , S1 := max

(
k

2
− 1

6
,−1

2

)
, (5.9)

max
c0≤c≤

√
(4−η)n

cke−
c2

2 He2
n (c)

n!
≤ B2n

S2 , S2 := max

(
k

2
− 1

2
,−1

2

)
. (5.10)

When |c| ≈
√

4n+ 2 (transition region), it is known (see, e.g., [25]) that the function

c 7→ He2
n (c) e−

c2

2 is close to its maximum, and is essentially of order O(n!n−
1
6 ) (see (5.12)).

When |c| <
√

4n+ 2 (oscillatory region) and |c| >
√

4n+ 2 (monotonic region), the Hermite
polynomials behave in a different way. More precisely, we have the following estimates.

Lemma 5.2 ([6, Theorem 1, Lemma 1]). There exist universal positive constants A,B,C,D
such that for every n ∈ N∗,

e−
c2

2 He2
n (c)

n!
≤ A√

4n+ 2− c2
, if |c| <

√
4n+ 2, (oscillatory region), (5.11)

Bn−
1
6 ≤ sup

c∈R

e− c22 He2
n (c)

n!

 ≤ Cn− 1
6 , (5.12)

e−
c2

2 He2
n (c)

n!
≤ Dn−

5
6(

c−
√

4n+ 2
)4 , if |c| >

√
4n+ 2, (monotonic region). (5.13)

The estimates exposed in Lemma 5.2 for the map c 7→ e−
c2

2 He2
n(c)

n! are discontinuous when
c ≈
√

4n+ 2 (maximum region). The strategy of the proof will consist in breaking down the
sum in n for EHe

N (c) into three pieces (see (5.16)) according to the monotonic, oscillatory, and
maximum regions and optimizing each term.

1the formulas were checked with Mathematica
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In the following, C denotes an independent (of c and N) positive constant that can change

from one line to another. As c ∈ R 7→ e−
c2

2 He2
n(c)

(n+1)! is even, we can assume (without loss of

generality) that c ≥ 0.
BEstimate (2.13). Let c ∈ [0,

√
4N ]. For n such that c ≤

√
4N <

√
4n+ 2, we can use (5.11)

which gives

EHe
N (c)e

c2

4 ≤ C

∑
n≥N

1

n
√

4n+ 2− 4N

1/2

≤ C
(

1√
2N

+

∫ +∞

N

dx

x
√

4x+ 2− 4N

)1/2

≤ C
(

1

N
+

1√
2N − 1

∫ +∞

0

dy

1 + y2

) 1
2

(set y =

√
4x+ 2− 4N√

4N − 2
)

≤ C

N
1
4

,

where we have used in the first line that the function x 7→ 1
x
√

4x+2−c2 is decreasing and the

integral test for convergence. Estimate (2.13) readily follows.

B Estimates (2.14) and (2.15). Suppose that c ≥
√

2N and N ≥ 13. We set ε(c,N) := (
√
N
c )

1
6 ∈

(0, 2−
1
12 ] and the intervals

Ω1,n (ε(c,N)) := [(1 + ε(c,N))
√

4n+ 2,+∞), Ω2,n (ε(c,N)) :=
[
0,
√

4n+ 2 (1− ε(c,N))
]
.

From (5.13), if c ∈ Ω1,n (ε(c,N)),

e−
c2

2 He2
n (c)

(n+ 1)!
≤ Cn−

5
6

ε(c,N)4 (4n+ 2)2 n
≤ C

ε(c,N)4n
23
6

, (5.14)

and from (5.11), if c ∈ Ω2,n(ε(c,N)),

e−
c2

2 He2
n (c)

(n+ 1)!
≤ C

(2ε(c,N)− ε(c,N)2)
1
2 n

3
2

≤ C

ε(c,N)
1
2n

3
2

. (5.15)

We further define

n1(c, ε(c,N)) :=

⌊
1

4

(( c

1 + ε(c,N)

)2

− 2
)⌋
, n2(c, ε(c,N)) :=

⌊
1

4

(( c

1− ε(c,N)

)2

− 2
)⌋
.

Notice that for every c, we have n1(c, ε(c,N)) ≤ n2(c, ε(c,N)). Moreover, for every n ≤
n1(c, ε(c,N)) (resp. n ≥ n2(c, ε(c,N)) + 1)), we have c ∈ Ω1,n(ε(c,N)) (resp. c ∈ Ω2,n(ε(c,N))).

First suppose that N ≤ n1 (c, ε(c,N)) ≤ n2 (c, ε(c,N)); in that case, the sum can be decom-
posed as:

∞∑
n=N

e−
c2

2 (Hen (c))2

(n+ 1)!
=

n1(c,ε(c,N))∑
n=N

e−
c2

2 (Hen (c))2

(n+ 1)!
+

∞∑
n=n2(c,ε(c,N))+1

e−
c2

2 (Hen (c))2

(n+ 1)!

+

n2(c,ε(c,N))∑
n=n1(c,ε(c,N))+1

e−
c2

2 (Hen (c))2

(n+ 1)!

=: R1 (c, ε(c,N)) +R2 (c, ε(c,N)) +R1,2 (c, ε(c,N)) .
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Combining estimates (5.14), (5.15), (5.12) together with (5.1), we obtain

R1 (c, ε(c,N)) ≤
n1(c,ε(c,N))∑

n=N

C

ε(c,N)4n
23
6

≤ C

ε(c,N)4N
17
6

,

R2 (c, ε(c,N)) ≤
∞∑

n=n2(c,ε(c,N))+1

C

ε(c,N)
1
2n

3
2

≤ C

ε(c,N)
1
2n2(c, ε(c,N))

1
2

,

R1,2 (c, ε(c,N)) ≤
n2(c,ε(c,N))∑

n=n1(c,ε(c,N))+1

C

n
7
6

≤ Cn2 (c, ε(c,N))− n1 (c, ε(c,N))

n1 (c, ε(c,N))
7
6

. (5.16)

First, there exists C > 0 such that n2(c, ε(c,N)) ≥ n1(c, ε(c,N)) ≥ Cc2 using ε(c,N) ≤ 2−
1
12

and c ≥
√

2N ≥
√

26. Second, let x (resp. y) be the argument in b. . . c from the definition of
n1(c, ε(c,N)) (resp. n2(c, ε(c,N))):

y − x =
ε(c,N)c2

(1− ε(c,N)2)2
=

N
1
12 c

11
6

(1− ε(c,N)2)2
≥ 1

using c ≥
√

26, and ε(c,N) ≤ 2−
1
12 . Therefore from the inequality byc − bxc ≤ 2(y − x) for any

y ≥ x+ 1, we have that

n2(c, ε(c,N))− n1(c, ε(c,N)) ≤ 2
ε(c,N)c2

(1− ε(c,N)2)2
≤ Cε(c,N)c2.

Hence there exists C > 0 such that ∞∑
n=N

e−
c2

2 (Hen (c))2

(n+ 1)!

 1
2

≤ C

(
1

ε(c,N)4N
17
6

+
1

ε(c,N)
1
2 c

+
ε(c,N)

c
1
3

) 1
2

≤ C
( c√

N

) 1
3N−

17
12 ∨

(√N
c

) 11
24N−

1
4 ∨

(√N
c

) 1
4N−

1
12 . (5.17)

If n1(c, ε(c,N)) + 1 ≤ N ≤ n2(c, ε(c,N)), then similar computations yield

∞∑
n=N

e−
c2

2 (Hen (c))2

(n+ 1)!
=

n2(c,ε(c,N))∑
n=N

e−
c2

2 (Hen (c))2

(n+ 1)!
+R2(c, ε(c,N))

≤ Cn2 (c, ε(c,N))−N + 1

N
7
6

+
C

ε(c,N)
1
2n2(c, ε(c,N))

1
2

,

and finally, after simplifications, (5.17) holds also. Similarly, if n2(c, ε(c,N)) + 1 ≤ N , then∑∞
n=N

e−
c2

2 (Hen(c))2

(n+1)! ≤ R2(c, ε(c,N)) ≤ C

ε(c,N)
1
2N

1
2

, and (5.17) holds again. In other words, we

have shown (5.17) for any c ≥
√

2N and N ≥ 7.
To conclude, we obtain estimates (2.14) and (2.15) observing that in the regime c ≥

√
2N ,(√

N
c

) 11
24N−

1
4 ≤ C

(√
N
c

) 1
4N−

1
12 , and that c ≤ N

39
14 ⇐⇒

(
c√
N

) 1
3N−

17
12 ≤

(√
N
c

) 1
4N−

1
12 .

5.4 Proof of Theorem of 2.3

From (2.5), the L2 error rewrites as

ELa
N (c) =

1

Γ
1
2
α+1

(
+∞∑
n=N

n!

(n+ 1)Γn+α+2

(
cα+1e−cL(α+1)

n (c)
)2
) 1

2

.

Again, we start with some estimates on the maximum of Laguerre polynomials.
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Lemma 5.3 ([34, Theorem 8.91.2]). Let k ∈ R, c0 > 0, and 0 < η < 4. Then, there exist
positive constants C1 and C2 (which depend on c0, η, α, and k) such that for every n ∈ N∗,

max
c0≤c

∣∣∣cke− c2 L(α+1)
n (c)

∣∣∣2 ≤ C1n
Q1 , Q1 := max

(
2k − 2

3
, α+

1

2

)
, (5.18)

max
c0≤c≤(4−η)n

∣∣∣cke− c2 L(α+1)
n (c)

∣∣∣2 ≤ C2n
Q2 , Q2 := max

(
2k − 1, α+

1

2

)
. (5.19)

Lemma 5.4 ([34, Theorem 7.6.5]). Define Mn := max0<c≤c1(c
α
2

+ 3
4 e−

c
2 |L(α+1)

n (c)|) for a fixed

c1 > 0. Then, as n→ +∞, we have M2
n ∼ Cnα+ 1

2 for some C > 0.

From the identity (n− 1)! = Γn and evoking [31, 5.6.8], we have for n ≥ 1,

n!

(n+ 1)Γn+α+2
≤ Γn

Γn+α+2
≤ 1

nα+2

and consequently ELa
N (c) ≤ 1

Γ
1
2
α+1

(∑+∞
n=N

1
nα+2

(
cα+1e−cL

(α+1)
n (c)

)2
) 1

2

.

B Estimate (2.16) for c ≤ 1. Combine Lemma 5.4 with c1 = 1 and (5.1).
B Estimate (2.16) for 1 ≤ c ≤ (4 − η)N . Combining (5.19) with k = α

2 + 3
4 and c0 = 1 along

with (5.1), there exists a universal constant A1 > 0 such that ELa
N (c) ≤ A1e

− c
2 c

α
2

+ 1
4N−

1
4 .

B Estimate (2.17). Combine (5.18) with k = α
2 + 7

12 and conclude again with (5.1).

5.5 Proof of Theorem of 2.4

B L2 error for the Jacobi polynomials. From (2.6), the L2 error writes as (after some easy
simplifications)

EJ
N (c) =

2−(α+β+2)

B
1
2
α+1,β+1

(1− c)
α
2

+ 1
4 (1 + c)

β
2

+ 1
4

( +∞∑
n=N

(2n+ α+ β + 3)

(n+ 1)(n+ α+ β + 2)

Γn+1Γn+α+β+3

Γn+α+2Γn+β+2

√
1− c2(1− c)α+1(1 + c)β+1

(
P(α+1,β+1)
n (c)

)2) 1
2 .

Writing w(α,β)(x) := w(x) and h
(α,β)
n := hn for the weight function and L2 norm for the Jacobi

polynomials (see Table 1), it holds

(2n+ α+ β + 3)Γn+1Γn+α+β+3

Γn+α+2Γn+β+2
(1− c)α+1(1 + c)β+1 =

2α+β+3w(α+1,β+1)(c)

h
(α+1,β+1)
n

,

and using that 1
(n+1)(n+α+β+2) ≤

1
n2 , we have

EJ
N (c) ≤ 2−

α+β+1
2

B
1
2
α+1,β+1

(1 − c)
α
2

+ 1
4 (1 + c)

β
2

+ 1
4
( +∞∑
n=N

1

n2

√
1− c2w(α+1,β+1)(c)

(P
(α+1,β+1)
n (c)√
h

(α+1,β+1)
n

)2) 1
2 .

We conclude thanks to the inequality ([27, Theorem 1])

max
c∈[−1,1]

√
1− c2w(α+1,β+1)(c)

(P
(α+1,β+1)
n (c)√
h

(α+1,β+1)
n

)2
≤ 2e

π

(
2 +

√
(α+ 1)2 + (β + 1)2

)
,

valid for all α, β > −1 along with (5.1).
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5.6 Proof of Lemma 3.1

B Jacobi polynomials. Introducing y = t
x , it holds

Bα+1,β+1x
−(α+1)Bα+1,β+1(x) = x−(α+1)

∫ x

0
tα (1− t)β dt =

∫ 1

0
yα (1− xy)β dy, (5.20)

and so we have Bα+1,β+1(x) ∼
x→0+

xα+1

(α+1)Bα+1,β+1
. Setting x = B−1

α+1,β+1(q), we easily get that

B−1
α+1,β+1(q) ∼

q→0+
((α+ 1)Bα+1,β+1)

1
α+1 q

1
α+1 .

Using that cJ(q) = 2B−1
α+1,β+1(q)− 1, we readily obtain (3.5). The equivalent (3.6) is obtained

by swapping the role of α and β.

B Hermite polynomials. Using that −
√

2πxΦ(x) ∼
x→−∞

e−
x2

2 ([31, 7.12.1]) and Φ−1(q) ∼
q→0+

−
√
−2 ln(q) ([13, Proposition 21]), we infer that e−

Φ−1(q)2

4 ∼
q→0+

2
1
2π

1
4 q

1
2 | ln(q)|

1
4 , and we readily

obtain (3.1). For the case q → 1−, proceed as before using Φ−1(1− q) = −Φ−1(q).

B Laguerre polynomials. For q → 0+, G−1
α+1(q) → 0, and Gα+1(x) ∼

x→0+

xα+1

Γα+2
([31, 8.7.1]). We

then obtain G−1
α+1(q) ∼

q→0+
(qΓα+2)

1
α+1 and (3.3) readily follows.

When q → 1−, we have G−1
α+1(q)→ +∞. Starting from the expansion Γα+1(x) ∼

x→+∞
xαe−x

([31, 8.11.2]), we infer that

G−1
α+1(q)αe−G−1

α+1(q) ∼
q→1−

Γα+1

(
G−1
α+1(q)

)
= Γα+1 × (1− q),

and consequently, as q → 1−,

G−1
α+1(q) ∼ −αW−1(−(Γα+1 × (1− q))

1
α

α
) ∼ −α ln(−(Γα+1 × (1− q))

1
α

α
) ∼ − ln(1− q),

whereW−1 (·) denotes the lower branch of the Lambert function and we have used thatW−1(−x) ∼
x→0+

ln(x) (see [11] for a review of the Lambert function W (·)). The expansion (3.4) for q → 1−

readily follows.
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