Mersenne et la conjecture de Collatz
Abstract
En donnant une interprétation différente de la conjecture de Collatz, aussi dite conjecture de Syracuse ou encore conjecture 3n + 1, il est possible de montrer assez simplement qu'il n'existe pas de cycles autre que le cycle 4:2:1. De plus, cette nouvelle formulation permet aussi de modifier la notion de convergence vers 1 par une convergence vers les diviseurs, notés Q2mdes nombres de Mersenne de la forme M2m = 2^(2m )− 1 = 3 • Q2m. Cette soumission a pour but de présenter la conjecture sous une forme qui ne semble pas avoir été explorée jusqu'à aujourd'hui et qui, semble-t-il, permettrait de montrer que la conjecture s'avère exacte, en montrant qu'il existe une bijection entre la partition des nombres impairs modulo 3 et la partition des nombres impairs associés aux trajectoires se terminant en Q2m.
Domains
Mathematics [math]
Origin : Files produced by the author(s)