Robotic optical-micromanipulation platform for teleoperated single-cell manipulation
Résumé
Single cell manipulation is considered a key technique for biological application. However, the lack of intuitive and effective systems make this techniques less widespread. We propose here a new tele-robotic solution for dexterous cell manipulation through optical tweezers. The slave robot consist in a combination of robot-assisted stages and a highspeed multi-trap technique and allows the manipulation of more than 15 optical traps in a workspace of (200×200×200) μm 3 for translations and (70 ×50 ×8) μm 3 for rotations, both with nanometric resolution. The master device with 6+1 Dof is employed to control the 3D position of optical traps in differents arrangements. Traps can be grouped and controlled in a variety of ways for specific purposes. Precision and efficiency studies are carried out with trajectory control tasks. Finally, the 6D teleoperated-control of an optical robot for cell-transport is presented. Results exemplify the kind of biological applications that can be accomplished with the presented system in an effective and intuitive way, even if the user does not come from an engineering background.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|