A Discrete Event Simulation-Based Model to Optimally Design and Dimension Mobile COVID-19 Saliva-Based Testing Stations
Résumé
The present COVID-19 brief report addresses: (1) the problem of optimal design and resource allocation to mobile testing stations to ensure rapid results to the persons getting tested; (2) the proposed solution through a newly developed discrete event simulation model, experienced in on-campus saliva-based testing stations at the University of Illinois at Urbana-Champaign; and (3) the lessons learned on how 10,000 samples (from noninvasive polymerase chain reaction COVID-19 tests) can be processed per day on campus, as well as how the model could be reused or adapted to other contexts by site managers and decision makers.