Energy-Efficient Algorithm for Load Balancing and VMs Reassignment in Data Centers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Energy-Efficient Algorithm for Load Balancing and VMs Reassignment in Data Centers

Nabila Djennane
  • Fonction : Auteur
  • PersonId : 1094511
Rachida Aoudjit
  • Fonction : Auteur
  • PersonId : 1094512
Samia Bouzefrane
  • Fonction : Auteur
  • PersonId : 1094513

Résumé

Nowadays, cloud computing is an effective solution for providing computing services to consumers. However, data centers that host computing resources are still faced with a misuse of resources and a workload imbalance of servers, where some servers become overloaded while others are underloaded or even idle. This results in performance degradation and resource wastage. The load balancing is a key aspect and has an important role in the management of cloud data centers. It allows an optimal use of the resources and improves the desired Quality of Service (QoS) using optimal methods for allocating resources and distributing workload. In this paper, we propose a load-balancing algorithm that is based on a new parameter called the balance factor of the data center, introduced here, to determine if a data center is imbalanced or not, in order to redistribute the workload equally over all the hosts. To minimize the energy consumption of the data center, our strategy relies on the live migration of virtual machines (VMs) while using a mathematical model. The simulation results, using the CloudSim toolkit, have shown that the energy efficiency can be managed by reassigning VMs to the data-center hosts.
Fichier principal
Vignette du fichier
camera_ready_Nabila.pdf (181.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03181645 , version 1 (25-03-2021)

Identifiants

Citer

Nabila Djennane, Rachida Aoudjit, Samia Bouzefrane. Energy-Efficient Algorithm for Load Balancing and VMs Reassignment in Data Centers. FiCloud Workshops, IEEE, Aug 2018, Barcelone, Spain. pp.225-230, ⟨10.1109/W-FiCloud.2018.00043⟩. ⟨hal-03181645⟩
44 Consultations
286 Téléchargements

Altmetric

Partager

More