Compactness and fractal dimensions of inhomogeneous continuum random trees - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2023

Compactness and fractal dimensions of inhomogeneous continuum random trees

Résumé

We introduce a new stick-breaking construction for inhomogeneous continuum random trees (ICRT). This new construction allows us to prove the necessary and sufficient condition for compactness conjectured by Aldous, Miermont and Pitman arXiv:math/0401115 by comparison with L\'evy trees. We also compute the fractal dimensions (Minkowski, Packing, Hausdorff).

Dates et versions

hal-03178562 , version 1 (23-03-2021)

Identifiants

Citer

Arthur Blanc-Renaudie. Compactness and fractal dimensions of inhomogeneous continuum random trees. Probability Theory and Related Fields, 2023, 185 (3-4), pp.961-991. ⟨10.1007/s00440-022-01138-9⟩. ⟨hal-03178562⟩
117 Consultations
0 Téléchargements

Altmetric

Partager

More