The G^α -scheme for Approximation of Fractional Derivatives: Application to the Dynamics of Dissipative Systems - Archive ouverte HAL
Article Dans Une Revue Journal of Vibration and Control Année : 2008

The G^α -scheme for Approximation of Fractional Derivatives: Application to the Dynamics of Dissipative Systems

Résumé

The Gear scheme is a three-level step algorithm, backward in time and second order accurate, for the approximation of classical time derivatives. In this article, the formal power of this scheme is used to approximate fractional derivative operators, in the context of finite difference methods. Numerical examples are presented and analyzed, in order to show the accuracy of the Gear scheme at the power 1 (G1-scheme) when compared to the classical Grnwald-Letnikov approximation. In particular, the combined G1 -Newmark scheme is shown to be second-order accurate for a fractional damped oscillator problem.
Fichier principal
Vignette du fichier
galucio2008.pdf (224.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03177693 , version 1 (12-01-2024)

Identifiants

Citer

Ana Cristina Galucio, Jean-François Deü, François Dubois. The G^α -scheme for Approximation of Fractional Derivatives: Application to the Dynamics of Dissipative Systems. Journal of Vibration and Control, 2008, 14 (9-10), pp.1597-1605. ⟨10.1177/1077546307087427⟩. ⟨hal-03177693⟩
46 Consultations
33 Téléchargements

Altmetric

Partager

More