Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture - Archive ouverte HAL
Article Dans Une Revue Knee Surgery, Sports Traumatology, Arthroscopy Année : 2020

Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture

Résumé

Purpose It was hypothesized in this in-vitro study that positioning a K-wire intersecting the cutting plane at the theoretical lateral hinge location would limit the cut depth and help preserve the lateral hinge during the opening of the osteotomy. Objectives were (1) to compare the mechanical resistance of the hinge and the protective effect of leaving the K-wire during the opening procedure (2) to check if the K-wire would limit the depth of the osteotomy. Methods An ex-vivo mechanical study, testing 5 pairs of fresh-frozen tibias, was designed. CT-scan based Patientspecific cutting guides were obtained to define the cutting plane and the location of the K-wire at the hinge, using standardized 3D planning protocol. In each pair, OWHTO was performed either with or without the K-wire. To evaluate the hinge's resistance to fracture, the specimens were rigidly fixed at the proximal tibia and a direct load was applied on the free tibial diaphysis to open the osteotomy. The maximum load at breakage, maximum permissible displacement and maximal angulation of the osteotomy before hinge failure was measured. To assess the preservation of an unscathed hinge (protected by the K-wire), the distance from the end of the osteotomy cut to the lateral tibial cortical was measured in mm. Results The maximum load to hinge breakage in the K-wires PsCG knees compared to the control group (48.3 N vs 5.5 N, p = 0.004), the maximum permissible displacement (19.8 mm vs 7.5 mm, p = 0.005) and the maximal angulation of the osteotomy before hinge breakage (9.9° vs 2.9°, p = 0.002) were all statistically superior in the K-wires PsCG knees compared to the control group. A mean distance of 10 ± 1 mm between cut-bone (saw-print) and lateral hinge cortical bone was found post-performing the osteotomy and the hinge failing. Conclusion The maximum load to breakage and the maximum permissible displacement were, respectively, 880% and 260% higher during the opening of the OWHTO in using K-wires compared to the non-K-wire control group. This confirms the mechanical advantage of using a K-wire for both stabilization and protecting the Hinge during OWHTO. This comparative cadaveric study shows an improvement of the lateral hinges resistance to failing during the opening of the osteotomy. This can be achieved by the placement of a K-wire intersecting the cutting plane at the theoretical location of the lateral hinge.
Fichier principal
Vignette du fichier
article 3_hal.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03176966 , version 1 (14-04-2021)

Identifiants

Citer

Edouard Dessyn, Akash Sharma, Mathias Donnez, Patrick Chabrand, Matthieu Ehlinger, et al.. Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28 (3), pp.751-758. ⟨10.1007/s00167-019-05404-7⟩. ⟨hal-03176966⟩
38 Consultations
402 Téléchargements

Altmetric

Partager

More