Adaptation to a heterogeneous patchy environment with nonlocal dispersion - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2023

Adaptation to a heterogeneous patchy environment with nonlocal dispersion

Alexis Léculier
  • Fonction : Auteur
  • PersonId : 1031481

Résumé

In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.
Fichier principal
Vignette du fichier
LeculierMirrahimiV2.pdf (769.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03170847 , version 1 (16-03-2021)
hal-03170847 , version 2 (17-01-2022)

Identifiants

Citer

Alexis Léculier, Sepideh Mirrahimi. Adaptation to a heterogeneous patchy environment with nonlocal dispersion. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2023, 40 (5), pp.1225-1266. ⟨10.4171/AIHPC/59⟩. ⟨hal-03170847v2⟩
82 Consultations
57 Téléchargements

Altmetric

Partager

More