Continuous Mesh Framework Part II: Validations and Applications - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2011

Continuous Mesh Framework Part II: Validations and Applications

Résumé

This paper gives a numerical validation of the continuous mesh framework introduced in Part I [A. Loseille and F. Alauzet, SIAM J. Numer. Anal., 49 (2011), pp. 38-60]. We numerically show that the interpolation error can be evaluated analytically once analytical expressions of a mesh and a function are given. In particular, the strong duality between discrete and continuous views for the interpolation error is emphasized on two-dimensional and three-dimensional examples. In addition, we show the ability of this framework to predict the order of convergence, given a specific adaptive strategy defined by a sequence of continuous meshes. The continuous mesh concept is then used to devise an adaptive strategy to control the L p norm of the continuous interpolation error. Given the L p norm of the continuous interpolation error, we derive the optimal continuous mesh minimizing this error. This exemplifies the potential of this framework, as we use a calculus of variations that is not defined on the space of discrete meshes. Anisotropic adaptations on analytical functions correlate the optimal predicted theoretical order of convergence. The extension to a solution of nonlinear PDEs is also given. Comparisons with experiments show the efficiency and the accuracy of this approach.
Fichier principal
Vignette du fichier
contmesh.part2.final2.pdf (21.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03167252 , version 1 (15-03-2021)

Identifiants

Citer

Adrien Loseille, Frédéric Alauzet. Continuous Mesh Framework Part II: Validations and Applications. SIAM Journal on Numerical Analysis, 2011, 49 (1), pp.61-86. ⟨10.1137/10078654X⟩. ⟨hal-03167252⟩
59 Consultations
71 Téléchargements

Altmetric

Partager

More