Application of Machine Learning Tools for the Improvement of Reactive Extrusion Simulation
Abstract
The purpose of this paper is to combine a classical 1D twin-screw extrusion model with machine learning techniques to obtain accurate predictions of a complex system despite few data. Systems involving reactive polyethylene oligomer dispersed in situ in a polypropylene matrix by reactive twin-screw extrusion are studied for this purpose. The twin-screw extrusion simulation software LUDOVIC is used and machine learning techniques dealing with low data limit are used as a correction of the simulation.
Origin : Files produced by the author(s)