Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity
Résumé
We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for the Fast Diffusion Equation with weights (WFDE) $u_t=|x|^\gamma\mathrm{div}\left(|x|^{-\beta}\nabla u^m\right)$ posed on $(0,+\infty)\times\mathbb{R}^d$, with $d\ge 3$, in the so-called good fast diffusion range $m_c
Nikita Simonov : Connectez-vous pour contacter le contributeur
https://hal.science/hal-03159914
Soumis le : jeudi 4 mars 2021-18:47:54
Dernière modification le : lundi 27 mai 2024-14:41:20
Dates et versions
Identifiants
- HAL Id : hal-03159914 , version 1
- ARXIV : 2002.09967
- DOI : 10.1016/j.aim.2019.01.018
Citer
Matteo Bonforte, Nikita Simonov. Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity. Advances in Mathematics, 2019, 345, pp.1075-1161. ⟨10.1016/j.aim.2019.01.018⟩. ⟨hal-03159914⟩
52
Consultations
0
Téléchargements