Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics Année : 2019

Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity

Résumé

We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for the Fast Diffusion Equation with weights (WFDE) $u_t=|x|^\gamma\mathrm{div}\left(|x|^{-\beta}\nabla u^m\right)$ posed on $(0,+\infty)\times\mathbb{R}^d$, with $d\ge 3$, in the so-called good fast diffusion range $m_c

Dates et versions

hal-03159914 , version 1 (04-03-2021)

Identifiants

Citer

Matteo Bonforte, Nikita Simonov. Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity. Advances in Mathematics, 2019, 345, pp.1075-1161. ⟨10.1016/j.aim.2019.01.018⟩. ⟨hal-03159914⟩
52 Consultations
0 Téléchargements

Altmetric

Partager

More