The Power of Programs over Monoids in J and Threshold Dot-depth One Languages - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

The Power of Programs over Monoids in J and Threshold Dot-depth One Languages

Nathan Grosshans

Résumé

The model of programs over (finite) monoids, introduced by Barrington and Thérien, gives an interesting way to characterise the circuit complexity class $\mathsf{NC^1}$ and its subclasses and showcases deep connections with algebraic automata theory. In this article, we investigate the computational power of programs over monoids in $\mathbf{J}$, a small variety of finite aperiodic monoids. First, we give a fine hierarchy within the class of languages recognised by programs over monoids from $\mathbf{J}$, based on the length of programs but also some parametrisation of $\mathbf{J}$. Second, and most importantly, we make progress in understanding what regular languages can be recognised by programs over monoids in $\mathbf{J}$. To this end, we introduce a new class of restricted dot-depth one languages, threshold dot-depth one languages. We show that programs over monoids in $\mathbf{J}$ actually can recognise all languages from this class, using a non-trivial trick, and conjecture that threshold dot-depth one languages with additional positional modular counting suffice to characterise the regular languages recognised by programs over monoids in $\mathbf{J}$. Finally, using a result by J. C. Costa, we give an algebraic characterisation of threshold dot-depth one languages that supports that conjecture and is of independent interest.
Fichier principal
Vignette du fichier
Power_programs_over_J_and_TDDO_languages-Published_version.pdf (639.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03157113 , version 1 (02-03-2021)

Identifiants

Citer

Nathan Grosshans. The Power of Programs over Monoids in J and Threshold Dot-depth One Languages. 2021. ⟨hal-03157113⟩
68 Consultations
48 Téléchargements

Altmetric

Partager

More