Statistical analysis of a hierarchical clustering algorithm with outliers - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2022

Statistical analysis of a hierarchical clustering algorithm with outliers

Résumé

It is well known that the classical single linkage algorithm usually fails to identify clusters in the presence of outliers. In this paper, we propose a new version of this algorithm, and we study its mathematical performances. In particular, we establish an oracle type inequality which ensures that our procedure allows to recover the clusters with large probability under minimal assumptions on the distribution of the outliers. We deduce from this inequality the consistency and some rates of convergence of our algorithm for various situations. Performances of our approach is also assessed through simulation studies and a comparison with classical clustering algorithms on simulated data is also presented.
Fichier principal
Vignette du fichier
klutchnikoff_poterie_rouviere_2022.pdf (1.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03153805 , version 1 (26-02-2021)
hal-03153805 , version 2 (17-03-2022)

Identifiants

Citer

Nicolas Klutchnikoff, Audrey Poterie, Laurent Rouviere. Statistical analysis of a hierarchical clustering algorithm with outliers. Journal of Multivariate Analysis, 2022, 192, pp.article n° 105075. ⟨10.1016/j.jmva.2022.105075⟩. ⟨hal-03153805v2⟩
160 Consultations
483 Téléchargements

Altmetric

Partager

More