Existence and global behaviour of weak solutions to a doubly nonlinear evolution equation involving fractional p-Laplacian equation - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Differential Equations Année : 2021

Existence and global behaviour of weak solutions to a doubly nonlinear evolution equation involving fractional p-Laplacian equation

Résumé

In this article, we study a class of doubly nonlinear parabolic problems involving the fractional p-Laplace operator. For this problem, we discuss existence, uniqueness and regularity of the weak solutions by using the time-discretization method and monotone arguments. For global weak solutions, we also prove stabilization results by using the accretivity of a suitable associated operator. This property is strongly linked to the Picone identity that provides further a weak comparison principle, barrier estimates and uniqueness of the stationary positive weak solution. For more information see https://ejde.math.txstate.edu/Volumes/2021/09/abstr.html
Fichier principal
Vignette du fichier
giacomoni.pdf (539.98 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03150699 , version 1 (12-07-2024)

Licence

Identifiants

Citer

Jacques Giacomoni, Abdelhamid Gouasmia, Abdelhafid Mokrane. Existence and global behaviour of weak solutions to a doubly nonlinear evolution equation involving fractional p-Laplacian equation. Electronic Journal of Differential Equations, 2021, 2021 (01-104), pp.09. ⟨10.58997/ejde.2021.09⟩. ⟨hal-03150699⟩
52 Consultations
58 Téléchargements

Altmetric

Partager

More