Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for Fine-grained Imbalanced Data Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for Fine-grained Imbalanced Data Classification

Résumé

Fine-grained classification aims at distinguishing between items with similar global perception and patterns, but that differ by minute details. Our primary challenges come from both small inter-class variations and large intra-class variations. In this article, we propose to combine several innovations to improve fine-grained classification within the use-case of wildlife, which is of practical interest for experts. We utilize geo-spatiotemporal data to enrich the picture information and further improve the performance. We also investigate state-of-the-art methods for handling the imbalanced data issue.
Fichier principal
Vignette du fichier
IJCAI.pdf (265.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03150686 , version 1 (30-03-2021)

Licence

Identifiants

Citer

Charles A. Kantor, Marta Skreta, Brice Rauby, Léonard Boussioux, Emmanuel Jehanno, et al.. Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for Fine-grained Imbalanced Data Classification. IJCAI 2021 - Workshop on AI for Social Good, Jan 2021, Tokyo, Japan. ⟨hal-03150686⟩
1010 Consultations
240 Téléchargements

Altmetric

Partager

More