BORD: bayesian optimum radar detector - Archive ouverte HAL
Article Dans Une Revue Signal Processing Année : 2003

BORD: bayesian optimum radar detector

Résumé

We derive the expression of an optimum non-Gaussian radar detector from the non-Gaussian spherically invariant random process (SIRP) clutter model and a bayesian estimator of the SIRP characteristic density. SIRP modelizes non-Gaussian process as a complex Gaussian process whose variance, the so-called texture, is itself a positive random variable (r.v.). After performing a bayesian estimation of the texture probability density function (PDF) from reference clutter cells we derive the so-called bayesian optimum radar detector (BORD) without any knowledge about the clutter statistics. We also derive the asymptotic expression of BORD (in law convergence), the so-called asymptotic BORD, as well as its theoretical performance (analytical threshold expression). BORD performance curves are shown for an unknown target signal embedded in correlated K-distributed and are compared with those of the optimum K-distributed detector. These results show that BORD reach optimal detector performances.

Dates et versions

hal-03149891 , version 1 (23-02-2021)

Identifiants

Citer

Emmanuelle Jay, Jean-Philippe Ovarlez, David Declercq, Patrick Duvaut. BORD: bayesian optimum radar detector. Signal Processing, 2003, 83 (6), pp.1151-1162. ⟨10.1016/S0165-1684(03)00034-3⟩. ⟨hal-03149891⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More