Linear-quadratic stochastic delayed control and deep learning resolution - Archive ouverte HAL
Article Dans Une Revue Journal of Optimization Theory and Applications Année : 2021

Linear-quadratic stochastic delayed control and deep learning resolution

Résumé

We consider a class of stochastic control problems with a delayed control, both in drift and diffusion, of the type dX t = α t−d (bdt + σdW t). We provide a new characterization of the solution in terms of a set of Riccati partial differential equations. Existence and uniqueness are obtained under a sufficient condition expressed directly as a relation between the horizon T and the quantity d(b/σ) 2. Furthermore, a deep learning scheme is designed and used to illustrate the effect of delay on the Markowitz portfolio allocation problem with execution delay.
Fichier principal
Vignette du fichier
LQ_stocontrol_delay.pdf (1.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03145949 , version 1 (18-02-2021)
hal-03145949 , version 2 (22-02-2021)
hal-03145949 , version 3 (23-02-2021)

Identifiants

Citer

William Lefebvre, Enzo Miller. Linear-quadratic stochastic delayed control and deep learning resolution. Journal of Optimization Theory and Applications, 2021, 191 (1), pp.134-168. ⟨10.1007/s10957-021-01923-x⟩. ⟨hal-03145949v3⟩
106 Consultations
151 Téléchargements

Altmetric

Partager

More