Near-inertial energy propagation inside a Mediterranean anticyclonic Eddy
Résumé
Motivated by observations of a strong near-inertial wave signal at the base of the semipermanent anticyclonic
Cyprus Eddy during the 2010 Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean
(BOUM) experiment, a numerical study is performed to investigate the role of near-inertial/eddy interactions in
energy transfer out of the mixed layer. A hybrid temporal–spatial decomposition is used to split all variables into
three independent components: slow (eddy) and fast (inertial oscillations 1 waves), which proves useful in
understanding the flow dynamics. Through a detailed energy budget analysis, we find that the anticyclonic eddy
acts as a catalyst in transferring wind-driven inertial energy to propagating waves. While the eddy sets the spatial
scales of the waves, it does not participate in any energy exchange. Near-inertial propagation through the eddy
core results in the formation of multiple critical levels with the largest accumulation of wave energy at the base of
the eddy. A complementary ray-tracing analysis reveals critical-level formation when the surface-confined inertial rays originate within the negative vorticity region. In contrast, rays originating outside this region focus at
the base of the eddy and can propagate at depth.
Fichier principal
[15200485 - Journal of Physical Oceanography] Near-Inertial Energy Propagation inside a Mediterranean Anticyclonic Eddy.pdf (2.13 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|