Adaptive parameter selection for weighted-TV image reconstruction problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Adaptive parameter selection for weighted-TV image reconstruction problems

Résumé

We propose an efficient estimation technique for the automatic selection of locally-adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-the-art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].

Dates et versions

hal-03141109 , version 1 (15-02-2021)

Identifiants

Citer

Luca Calatroni, Alessandro Lanza, Monica Pragliola, Fiorella Sgallari. Adaptive parameter selection for weighted-TV image reconstruction problems. NCMIP 2019 - 9th International Conference on New Computational Methods for Inverse Problems, May 2021, Cachan, France. pp.012003, ⟨10.1088/1742-6596/1476/1/012003⟩. ⟨hal-03141109⟩
79 Consultations
0 Téléchargements

Altmetric

Partager

More