Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment - Archive ouverte HAL
Article Dans Une Revue Diagnostic and Interventional Imaging Année : 2020

Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment

Kathryn Schutte
  • Fonction : Auteur
Paul Jehanno
  • Fonction : Auteur
Paul Herent
  • Fonction : Auteur
Alain Luciani
Simon Jégou
  • Fonction : Auteur

Résumé

Purpose :The purpose of this study was to build and train a deep convolutional neural networks (CNN) algorithm to segment muscular body mass (MBM) to predict muscular surface from a two-dimensional axial computed tomography (CT) slice through L3 vertebra.Materials and methods :An ensemble of 15 deep learning models with a two-dimensional U-net architecture with a 4-level depth and 18 initial filters were trained to segment MBM. The muscular surface values were computed from the predicted masks and corrected with the algorithm's estimated bias. Resulting mask prediction and surface prediction were assessed using Dice similarity coefficient (DSC) and root mean squared error (RMSE) scores respectively using ground truth masks as standards of reference.Results :A total of 1025 individual CT slices were used for training and validation and 500 additional axial CT slices were used for testing. The obtained mean DSC and RMSE on the test set were 0.97 and 3.7 cm2 respectively.Conclusion :Deep learning methods using convolutional neural networks algorithm enable a robust and automated extraction of CT derived MBM for sarcopenia assessment, which could be implemented in a clinical workflow.
Fichier principal
Vignette du fichier
S2211568420301224.pdf (1.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03138538 , version 1 (15-12-2022)

Licence

Identifiants

Citer

Paul Blanc-Durand, Jean-Baptiste. Schiratti, Kathryn Schutte, Paul Jehanno, Paul Herent, et al.. Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment. Diagnostic and Interventional Imaging, 2020, 101 (12), pp.789-794. ⟨10.1016/j.diii.2020.04.011⟩. ⟨hal-03138538⟩
160 Consultations
129 Téléchargements

Altmetric

Partager

More