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Abstract  

Purpose: The purpose of this study was to build and train a deep convolutional neural 

networks (CNN) algorithm to segment muscular body mass (MBM) to predict muscular 

surface from a two-dimensional axial computed tomography (CT) slice through L3 vertebra.  

Materials and methods: An ensemble of 15 deep learning models with a two-dimensional 

U-net architecture with a 4-level depth and 18 initial filters were trained to segment MBM. 

The muscular surface values were computed from the predicted masks and corrected with the 

algorithm’s estimated bias. Resulting mask prediction and surface prediction were assessed 

using Dice similarity coefficient (DSC) and root mean squared error (RMSE) scores 

respectively using ground truth masks as standards of reference. 

Results: A total of 1,025 individual CT slices were used for training and validation and 500 

additional axial CT slices were used for testing. The obtained mean DSC and RMSE on the 

test set were 0.97 and 3.7 cm2 respectively. 

Conclusion: Deep learning methods using convolutional neural networks algorithm enable a 

robust and automated extraction of CT derived MBM for sarcopenia assessment, which could 

be implemented in a clinical workflow. 

Keywords: Tomography, X-ray computed; Deep learning; Muscular body bass; Sarcopenia; 

Convolutional neural networks (CNN) 

 

Abbreviations 

2D: Two-dimensional 

BMI: Body mass index 

CNN: Convolutional neural network 

CT: Computed tomography 

DSC: Dice similarity coefficient 

MBM: Muscular body mass 

ME: Mean error  

MRI: Magnetic resonance imaging 
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RMSE: Root mean squared error 

SD: Standard deviation 

TAMA: Total abdominal muscle area 

Introduction 

 Body composition including assessment of muscular body mass (MBM) is of 

increased importance in oncology and several chronic diseases. In addition, body composition 

is associated with treatment toxicity that can affect patient survival [1–3]. More specifically, 

sarcopenia, which is defined by a loss of muscular mass and function, is frequently observed 

in up to 50% of patients with cancer [4].  

 Both physical examination and imaging techniques can be used to diagnose 

sarcopenia. Anthropometry, which generically refers to body measurements during clinical 

examination includes body mass index (BMI), skin-fold thickness and body circumference. In 

addition to physical examination imaging techniques such as computed tomography (CT), 

dual energy x-ray absorptiometry, ultrasonography and magnetic resonance imaging (MRI) 

are useful to assess body composition [5]. CT allows using three main indices to diagnose 

sarcopenia, which are psoas index, total abdominal muscle area (TAMA) and Hounsfield unit 

(HU) average calculation of body composition through estimation of tissue densities 

expressed in HU. For TAMA, some thresholds have been suggested [6]. Furthermore, 

calculation of these indices requires a delineation of muscles (also referred as segmentation) 

usually at the L3 or L4 vertebra level, which is time consuming and possibly affected by 

inter-observer variability. To make CT derived anthropometry clinically applicable, automatic 

approaches are mandatory.  

 As muscle and fat have different attenuation values on CT, they can be separated from 

one another using simple thresholding strategies [7]. However, because thresholding may 

result in a high level of noise, alternative methods have been developed such as thresholding 

and morphological operations [8], atlas methods [9] or conditional random fields [10]. More 

recently, convolutional neural networks (CNN), which originated from the deep learning 

community have been adopted by the radiological community because of their ability to learn 

spatial features from medical images. They are particularly effective for lesion segmentation 

or detection tasks in various medical applications [11, 12,13]. For the specific body 

composition estimation, CNN have already been employed to automatically identify the axial 
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slice at the mid-L3 level thus facilitating manual segmentation of MBM [14] or impulse the 

training of a second CNN for segmentation purposes [15]. Several studies have evaluated 

different CNN architectures on single CT slices for binary segmentations of adipose tissue or 

muscles [16,17]. Finally, Weston et al. trained a CNN with a U-net architecture on a large 

cohort to segment four compartments and used another independent cohort for further 

validation [18]. 

 The purpose of this study was to build and train a deep CNN algorithm to segment 

MBM, in order to predict muscular surface from a two-dimensional (2D) axial CT slice at the 

level of L3 vertebra. 

Materials and Methods 

Study population 

 The CT data were provided as part of the “Sarcopenia Challenge” organized during 

the 2019 edition of the Journées Françaises de Radiologie, which is the annual meeting of the 

French Society of Radiology (Société Française de Radiologie). The complete dataset was 

composed of 1025 axial CT slices for training and validation and was released in two times. A 

first set was initially available, and a second set was released one month later. Five hundred 

additional axial CT slices were made available for testing. Inference had to be made in one 

hour. CT examinations came from multiple French institutions with different acquisition 

parameters and hardware. All CT examinations and ground truth masks were visually 

inspected and three of them were excluded because the ground truth masks were not correctly 

co-registered to their respective original CT examinations. Out of the 1,022 axial CT slices 

were finally included, 40 were randomly assigned to the validation set with stratification on 

the quality label. 

Ground truth generation 

 The 2D ground truth masks T, which included abdominal belt and psoas muscles at 

the level of the mid L3 vertebra were manually annotated by eleven expert radiologists (O.L., 

N.L, Y.B, A.S., A.L., O.E., L.B., M.C.,A.D., N.B. et M.C.), using the public freeware 

3DSlicer [19] with a standardized protocol ,which included a manual contouring of muscles 

followed by a fixed thresholding where pixels with attenuation value < -29 HU and > 150 HU 

were excluded. Each ground truth segmentation was reviewed by a third-party expert (F.P. ; 
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with an experience of over 1000 manual segmentations of MBM from CT data for sarcopenia 

assessment) and was assigned to a quality label ranging from 'A' to 'D' where : “A” 

corresponded to perfect segmentation ; “B” corresponded to a segmentation with only few 

pixels in the ground truth mask out of muscles and of which surface was < 0.5 cm2; “C” for 

masks with a significant number of pixels > 0.5 cm2 were misclassified ; “D” when CT were 

of non-diagnostic quality (noisy images or containing artifacts), if ground truth masks 

included non-muscular structure or if large muscular portions were missed. 

Model 

Pre-processing 

All available individual CT slices and ground truth masks were resampled to a 512 x 512 

tensor of 1 mm2 pixel size, using a linear interpolation of order 3. Pixel values were clipped 

between -150 HU and 300 HU and normalized using a min-max normalization from [-150, 

300] HU to [0, 1]. Data was stored with 16-bits floating-point precision. 

Model architecture 

 We used an ensemble of 15 similar models. Each model was built on a 2D-Unet 

architecture with a 4-level depth and 18 initial filters. For all resolutions, a block of layers was 

designed as follows: three convolutional layers with a filter size of 3 and a rectified linear unit 

(ReLU) activation layer (that breaks the linearity of the model). The number of filters in the 

encoding path was doubled in each block. Finally, a decoding path mirrored the encoding path 

for the upsampling part. Each network counted 2,953,409 weights and had a receptive field of 

10.7 × 10.7 cm2. Therefore, the 15 models only differed by their weights as they have been 

trained separately. The average of the 15 outputs (one for each model) was used as final 

prediction. An overview of the network can be seen in Figure 1. 

Network training 

 Training was performed on an Ubuntu workstation 16.04 with a 11-Go graphical 

processing unit GTX1080Ti for 150 epochs of 200 iterations of batch size 12. Initial learning 

rate was set to 10-3. An adaptive learning rate scheme with a polynomial degree of order 5 

was used. Weights were updated with the Adam optimizer. Main augmentation strategies 

included rotations (-10, +10) and scaling (0.9, 1.1). The Dice similarity coefficient (DSC) was 
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used as a loss function and was back-propagated to the network weights with 1 corresponding 

to a perfect overlap. 

Post-processing 

 The predicted masks were then resampled back to the image original resolution using 

a linear interpolation of order 3. Only pixels with a probability of being muscle tissue over 0.5 

were kept. The final mask was then computed using a morphological dilation with a squared 

connectivity of 1, and thresholded at [-29; 150] HU to follow the ground truth procedure.  

Surface estimation 

 From the final mask (P), the predicted surface was estimated as the sum of non-zero 

pixels multiplied by the pixel size. On the validation set, the mean error (ME) was subtracted 

from each predicted surface of examinations with quality label A, B or C. This ME was 

defined as follows:  

�� =  1
� �(	
� − 	
)

�


��
  

Where 	
�  (resp. 	
) denotes the predicted (resp. true) muscle surface for the i-th individual. 

Results 

 We analyzed the impact of our pre and post-processing on both DSC and root mean 

squared error (RMSE) in the validation set. As a baseline without preprocessing, DSC and 

RMSE were respectively 0.93 ± 0.03 (SD) (range: 0.85 - 0.97) and 4.7 ± 3.1 (SD) (range: 0.0 

- 11.7). DSC and RMSE evolution as a function of the number of U-net model are shown in 

Figure 2. They reached a plateau at the tenth model, with further marginal improvement 

thereafter. It led to a 1.1% DSC rise and a 4.7% RMSE decrease. The post-processing, which 

included a dilation and a thresholding, improved DSC of 2.3% and decreased RMSE of 

17.7%. Finally, after subtracting ME in the validation set to the predicted surface, RMSE 

decreased from 3.4 cm2 ± 3.1 (SD) (range: 0.1 - 13.4) to 2.8 cm2 ± 2.7 (SD) (range: 0.0 - 

10.7). Waterfall plots of those different steps leading to the final performances reported are 

shown in Figure 3. 
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 Some examples of predictions are shown in Figure 4. DSC in the validation and 

testing sets were respectively 0.96 ± 0.02 (SD) (range: 0.86 - 0.98) and 0.97 ± 0.02 (SD) 

(range: 0.89 - 0.99). Distribution of DSC for each quality label is displayed in Figure 5. 

 After post-processing operation, a surface overestimation was observed in the 40 CT 

slices used for validation (validation set) that is consistent with the dilation that justified our 

choice to correct our algorithm bias (Figure 6A). Finally, in the testing set MSE was 13.6 ± 

23.6 (SD) (range: 0.0 - 169.5) and RMSE was 3.7 cm2 ± 2.3 (SD) (range: 0.0 - 13.0). A scatter 

plot of predicted surfaces and ground truth surface for the testing set is shown in Figure 6B.  

Discussion 

 This study proposed and validated a deep learning algorithm to automatically segment 

MBM from CT data using an ensemble of U-net architectures. We obtained a DSC of 0.97 ± 

0.02 (SD) in the testing set resulting in optimal performances by comparison with prior 

studies [17, 20]. Using fully connected network Lee et al. reported a DSC of 0.93 for MBM 

segmentation [17] while using a similar architecture Park et al. reported DSC a 0.96 [20]. 

More recently, Weston et al. trained and validated a U-net and reached a 0.96 DSC in a large 

cohort for MBM segmentation but also achieved high performances both for intra-abdominal 

and subcutaneous fat segmentations [18]. 

 From a methodological point of view, pre-processing was limited as it was only 

composed of resampling to a 1mm2 isotropic pixel and a min-max normalization without 

whitening. We stored our data with 16-bits floating-point precision as Lee et al. demonstrated 

for the specific body composition segmentation task that neither min-max normalization 

(referred as windowing) nor a minimum of 256 grey levels (stored on at least 8 bits) impacted 

DSC in their model [17]. After the post-processing operation, a surface overestimation was 

observed in the 40 CT slices used as validation set. As a result, we decided to correct the 

algorithm's bias by subtracting the validation's mean error. We also chose to exclude images 

with low quality segmentations (denoted by the "D" label quality) for mean error estimation 

as we believe that ground truth surface may not be reliable enough in that population. We 

showed that our algorithm was robust to poor label quality. However, the DSC associated 

with lower quality exams is slightly lower and with higher variance, which can be explained 

either by an incorrect algorithm prediction or an incorrect ground truth segmentation. 

 Main limitations of this work include the fact that, even if a large dataset for testing 

was available, a proper independent cohort would be mandatory to validate the algorithm. 
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Also because of the anonymization process nor height nor weight were available which did 

not allow us to compare performances between groups such as sex or stratified on body mass 

index.  

 In conclusion, deep learning makes CT derived MBM calculation clinically feasible 

within the daily radiological workflow. The latter will allow routinely obtaining new 

biomarker that may provide better diagnosis of sarcopenia and which may benefit to patients 

within tailored and personalized medicine.  
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Figure Legends 

 

Figure 1. Diagram shows the architecture of the model used. It consists of an ensemble of 15 U-

net architectures where the mean of predictions is used as final prediction.  

Figure 2. Graphs show evolution of Dice similarity coefficient (DSC) in the validation set as a 

function of the number of U-net used in the ensemble of models. A, Mean DSC in the validation 

set of the 15 trained models with min-max DSC for each epoch. For clarity, we set the epochs 

axis to 50 instead of 150. The black dashed line corresponds to the 0.95 DSC. B, Evolution of DSC 

when the number of U-net increased. C, Evolution of root mean squared error (RMSE) when the 

number of U-net increased. 

Figure 3. Waterfall plots show impact on Dice similarity coefficient(DSC) (A), and root mean 

squared error (RMSE) (B), when multiple models are used, with post-processing (including a 

dilation and a fixed thresholding), and after correction of models bias for RMSE.  

Figure 4. Left part of figure shows examples of three axial CT slices in the validation set overlaid 

(in red) with their ground truth masks. Right part of figure shows CT overlaid with in green the 

true-positive pixels, in blue the false-positive pixels and in red the false-negative pixels. Dice 

similarity coefficients are 0.971 for A, 0.962 for B, and 0.962 for C.  

Figure 5. Violin plots show the distributions estimated by kernel density estimate of Dice 

similarity coefficient (DSC) among the different quality labels of the ground truth masks ranging 

from better to worse from A to D (x-axis) for the testing set. Medians (white dots), interquartile 

ranges (thick black line) and 1.5 × interquartile ranges (thin black line) are over-imposed with 

the kernel density estimate.  

Figure 6. Graphs show scatter plot of predicted area and ground truth area before (blue dots) 

and after (green stars) algorithm bias correction using linear regression in the validation set A 

and a scatter plot of predicted area and ground truth area in the testing set B. Of note, on A, most 

of the blue dots are at the right part of the identity line, indicating surface overestimation. 
















