Local Multiple Traces Formulation for Electromagnetics: Stability and Preconditioning for Smooth Geometries - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2022

Local Multiple Traces Formulation for Electromagnetics: Stability and Preconditioning for Smooth Geometries

Résumé

We consider the time-harmonic electromagnetic transmission problem for the unit sphere. Appealing to a vector spherical harmonics analysis, we prove the first stability result of the local multiple trace formulation (MTF) for electromagnetics, originally introduced by Hiptmair and Jerez-Hanckes [Adv. Comp. Math.37(2012), 37-91] for the acoustic case, paving the way towards an extension to general piecewise homogeneous scatterers. Moreover, we investigate preconditioning techniques for the local MTF scheme and study the accumulation points of induced operators. In particular, we propose a novel second-order inverse approximation of the operator. Numerical experiments validate our claims and confirm the relevance of the preconditioning strategies.
Fichier principal
Vignette du fichier
2003.08330.pdf (3.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03137241 , version 1 (10-02-2021)

Identifiants

Citer

Alan Ayala, Xavier Claeys, Paul Escapil-Inchauspé, Carlos F. Jerez-Hanckes. Local Multiple Traces Formulation for Electromagnetics: Stability and Preconditioning for Smooth Geometries. Journal of Computational and Applied Mathematics, 2022, 413, ⟨10.1016/j.cam.2022.114356⟩. ⟨hal-03137241⟩
113 Consultations
109 Téléchargements

Altmetric

Partager

More