Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2023

Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations

Résumé

This article deals with kinetic Fokker-Planck equations with essentially bounded coefficients. A weak Harnack inequality for non-negative super-solutions is derived by considering their Log-transform and adapting an argument due to S. N. Kruzkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W.~Wang and L.~Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
Fichier principal
Vignette du fichier
kinkruz-revised.pdf (627.76 Ko) Télécharger le fichier
stackedcylinders.jpg (16.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03133950 , version 1 (07-02-2021)
hal-03133950 , version 2 (22-07-2022)

Identifiants

Citer

Jessica Guerand, Cyril Imbert. Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations. Journal of the Institute of Mathematics of Jussieu, 2023, 22 (6), pp.2749-2774. ⟨10.1017/S1474748022000160⟩. ⟨hal-03133950v2⟩
113 Consultations
135 Téléchargements

Altmetric

Partager

More