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Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations

. Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.

Introduction

This paper is concerned with local properties of solutions of linear kinetic equations of Fokker-Planck type in some cylindrical domain Q 0

(∂ t + v • ∇ x )f = ∇ v • (A∇ v f ) + B • ∇ v f + S (1) 
assuming that the diffusion matrix A is uniformly elliptic and B and S are essentially bounded: there exist λ, Λ > 0 such that for almost every (t, x, v) ∈ Q 0 , eigenvalues of A(t, x, v) = A T (t, x, v) lie in [λ, Λ], the vector field B satisfies:

|B(t, x, v)| ≤ Λ. (2) 
In particular, coefficients do not enjoy further regularity such as continuity, vanishing mean oscillation etc. For this reason, coefficients are said to be rough.

Main result

We classically reduce the local study to the case where Q 0 is at unit scale. For some reasons we expose below, Q 0 takes the form (-1, 0] × B R 0 × B R 0 for some large constant R 0 only depending on dimension and the ellipticity constants λ, Λ in [START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF]. Before stating our main result, we give the definition of (weak) super-solutions in a cylindrical open set Ω, that is to say an open set of the form I ×B x ×B v . A function f : Ω → R is a weak super-solution of [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF] in

Ω if f ∈ L ∞ (I, L 2 (B x × B v )) ∩ L 2 (I × B x , H 1 (B v )) and (∂ t + v • ∇ x )f ∈ L 2 (I × B x , H -1 (B v )
) and for all non-negative ϕ ∈ D(Ω), -

Q 0 f (∂ t + v • ∇ x )ϕ dz ≥ - Q 0 A∇ v f • ∇ v ϕ dz + Q 0 (B • ∇ v f + S)ϕ dz.
Theorem 1.1 (weak Harnack inequality). Let Q 0 = (-1, 0] × B R 0 × B R 0 and A, B satisfy (2) and S be essentially bounded in Q 0 . Let f be a non-negative super-solution of [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF] in some cylindrical open set Ω ⊃ Q 0 . Then

Q - f p (z) dz 1 p ≤ C inf Q + f + S L ∞ (Q + )
where Q + = (-ω 2 , 0]×B ω 3 ×B ω and Q -= (-1, -1+ω 2 ]×B ω 3 ×B ω ; the positive constants C, p, ω and R 0 only depend on the dimension and the ellipticity constants λ, Λ.

Remark 1. Combined with the fact that non-negative sub-solutions are locally bounded [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF], the weak Harnack inequality implies the Harnack inequality proved in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF], see Theorem 1.3 Remark 2. The proof of Theorem 1.1 is constructive. As a consequence, it provides a constructive proof of the Harnack inequality from [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]. Remark 3. The (weak) Harnack inequality implies Hölder regularity of weak solutions. Remark 4. Such a weak Harnack inequality can be generalized to the ultraparabolic equations with rough coefficients considered for instance in [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF][START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF]. Remark 5. This estimate can be scaled and stated in arbitrary cylinders thanks to Galilean and scaling invariances of the class of equations of the form [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF]. These invariances are recalled at the end of the introduction. Remark 6. As in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF][START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF], the radius ω is small enough so that when "stacking cylinders" over a small initial one contained in Q -, the cylinder Q + is captured, see Lemma 4.3. As far as R 0 is concerned, it is large enough so that it is possible to apply the expansion of positivity lemma (see Lemma 4.1) to every stacked cylinder.

Soon after this work was completed, another constructive proof of the Harnack inequality was proposed by the second author and C. Mouhot in [START_REF] Guerand | Quantitative De Giorgi methods in kinetic theory[END_REF]. While in the present article, we start from ideas developped by W. Wang and L. Zhang (see below for further details) and go further their Hölder bound by deriving a weak Harnack inequality for supersolutions, the first author and C. Mouhot show that De Giorgi's arguments implemented in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] can be made constructive. It is worth mentioning that they also derive the weak Harnack inequality.

Historical background and motivations

The weak Harnack inequality from our main theorem and the techniques we develop to establish it are deeply rooted in the large literature about elliptic and parabolic regularity, both in divergence and non-divergence form. De Giorgi's theorem and Harnack inequality. E. De Giorgi proved that solutions of elliptic equations in divergence form with rough coefficients are locally Hölder continuous [START_REF] Giorgi | Sull'analiticità delle estremali degli integrali multipli[END_REF][START_REF]Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF]. This regularity result for linear equations allowed him to solve Hilbert's 19 th problem by proving the regularity of weak solutions of a non-linear elliptic equation. The case of parabolic equations was addressed by J. Nash in [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF]. Then J. Moser [START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] showed that a Harnack inequality can be derived for non-negative solutions of elliptic and parabolic equations with rough coefficients by considering the logarithm of positive solutions. The proof of E. De Giorgi applies not only to solutions of elliptic equations but also to functions in what is now known as the elliptic De Giorgi class. Parabolic De Giorgi classes were then introduced in particular in [START_REF] Ladyzhenskaya | tseva, Linear and quasi-linear equations of parabolic type[END_REF].

The log-transform. While the proof of the continuity of solutions for parabolic equations by J. Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] includes the study of the "entropy" of the solution, related to its logarithm, the proof of the Harnack inequality for parabolic equations by Moser [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] relies in an essential way on the observation that the logarithm of the solution of a parabolic equation in divergence form satisfies an equation with a dominating quadratic term in the left hand side. This observation is then combined with a lemma that is the parabolic counterpart of a result by F. John and L. Nirenberg about functions with bounded mean oscillation. Independently, S. N. Kružkov reached Hölder continuity thanks to a Poincaré inequality due to Sobolev, see [START_REF] Kružkov | A priori bounds for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF]A priori bounds and some properties of solutions of elliptic and parabolic equations[END_REF]Eq. (1.18)]. But his method is not adapted to prove the Harnack inequality. This point will be further discussed in Subsection 1.4 below.

Weak Harnack inequality. Moser [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] and then Trudinger [37, Theorem 1.2] proved a weak Harnack inequality for parabolic equations. Lieberman [START_REF] Lieberman | Second order parabolic differential equations[END_REF] makes the following comment: "It should be noted [. . . ] that Trudinger was the first to recognize the significance of the weak Harnack inequality even though it was an easy consequence of previously known results. [...] " He also mentions that DiBenedetto and Trudinger [START_REF] Dibenedetto | Harnack inequalities for quasi-minima of variational integrals[END_REF] showed that nonnegative functions in the elliptic De Giorgi class corresponding to super-solutions of elliptic equations, satisfy a weak Harnack inequality and G. L. Wang [START_REF] Wang | Harnack inequalities for functions in De Giorgi parabolic class[END_REF][START_REF] Wang | Weak Harnack inequality for functions from class B 2 and application to parabolic Q-minima[END_REF] proves a weak Harnack inequality for functions in the corresponding parabolic De Giorgi class.

Parabolic equations in non-divergence form. N. V. Krylov and M. V. Safonov [START_REF] Krylov | A property of the solutions of parabolic equations with measurable coefficients[END_REF] derived a Harnack inequality for equations in non-divergence form. In order to do so, they introduce a covering argument now known as the Ink-spots theorem, see for instance [START_REF] Imbert | An introduction to fully nonlinear parabolic equations[END_REF]. Such a covering argument will be later used in the various studies of elliptic equations in divergence form, see e.g. [START_REF] Wang | Harnack inequalities for functions in De Giorgi parabolic class[END_REF][START_REF] Wang | Weak Harnack inequality for functions from class B 2 and application to parabolic Q-minima[END_REF] or [START_REF] Dibenedetto | Harnack inequalities for quasi-minima of variational integrals[END_REF]. [START_REF] Ferretti | Growth theorems and Harnack inequality for second order parabolic equations[END_REF] establish the interior Harnack inequality for both elliptic equations in divergence and non-divergence form by establishing what they call growth lemmas, allowing to control the behavior of solutions in terms of the measure of their super-level sets.

Expansion of positivity. Ferretti and Safonov

Gianazza and Vespri introduce in [START_REF] Gianazza | Parabolic De Giorgi classes of order p and the Harnack inequality[END_REF] suitable homogeneous parabolic De Giorgi classes of order p and prove a Harnack inequality. They shed light on the fact that their main technical point is a expansion of positivity in the following sense: if a solution lies above in a ball B ρ (x) at time t, then it lies above µ in a ball B 2ρ (x) at time t + Cρ p for some universal constants µ and C, that is to say constants only depending on dimension and ellipticity constants. They mention that G. L. Wang also used some expansion of positivity in [START_REF] Wang | Harnack inequalities for functions in De Giorgi parabolic class[END_REF].

More recently, R. Schwab and L. Silvestre [START_REF] Schwab | Regularity for parabolic integro-differential equations with very irregular kernels[END_REF] used such ideas in order to derive a weak Harnack inequality for parabolic integro-differential equations with very irregular kernels.

Hypoellipticity. In the case where A is the identity matrix, Equation (1) was first studied by Kolmogorov [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF]. He exhibited a regularizing effect despite the fact that diffusion only occurs in the velocity variable. This was the starting point of the hypoellipticity theory developed by Hörmander [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] for equations with smooth variable coefficients (unlike A and B in (1)).

Regularity theory for ultraparabolic equations. The elliptic regularity for degenerate Kolmogorov equations in divergence form with discontinuous coefficients, including [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF] with B = 0, started at the end of the years 1990 with contributions including [START_REF] Bramanti | L p estimates for some ultraparabolic operators with discontinuous coefficients[END_REF][START_REF] Manfredini | Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients[END_REF][START_REF] Polidoro | Sobolev-Morrey spaces related to an ultraparabolic equation[END_REF][START_REF]Hölder regularity for solutions of ultraparabolic equations in divergence form[END_REF]. As far as the rough coefficients case is concerned, A. Pascucci and S. Polidoro [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF] proved that weak (sub)solutions of (1) are locally bounded (from above). This result was later extended in [START_REF] Cinti | Pointwise estimates for a class of nonhomogeneous Kolmogorov equations[END_REF][START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF]. Then W. Wang and L. Zhang [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF] proved that solutions of (1) are Hölder continuous. Even if the authors do not state their result as an a priori estimate, it is possible to derive from their proof the following result for a class of ultraparabolic equations that contains equations of the form (1). Theorem 1.2 (Hölder regularity - [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF]). There exist α ∈ (0, 1) only depending on dimension, λ and Λ such that all weak solution f of (1) in some cylindrical open set

Ω ⊃ Q 1 = (-1, 0] × B 1 × B 1 satisfies [f ] C α (Q 1/2 ) ≤ C( f L 2 (Q 1 ) + S L ∞ (Q 1 ) )
with Q 1/2 = (-1/4, 0] × B 1/8 × B 1/2 ; the constant C only depends on the dimension and the ellipticity constants λ, Λ.

More recently, M. Litsgård and K. Nyström [START_REF] Litsgård | The dirichlet problem for kolmogorov-fokker-planck type equations with rough coefficients[END_REF] established existence and uniqueness results for the Cauchy Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients.

Linear kinetic equations with rough coefficients. Since the resolution of the 19 th Hilbert problem by E. de Giorgi [START_REF]Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF], it is known that being able to deal with coefficients that are merely bounded is of interest for studying non-linear problems. There are several models from the kinetic theory of gases related to equations of the form (1) with A, B and S depending on the solution itself. The most famous and important example is probably the Landau equation [START_REF] Landau | Statistical physics[END_REF].

An alternative proof of the Hölder continuity Theorem 1.2 was proposed by F. Golse, C. Mouhot, A. F. Vasseur and the second author [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] and a Harnack inequality was obtained.

Theorem 1.3 (Harnack inequality - [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]). Let f be a non-negative weak solution of (1)

in some cylindrical open set Ω containing Q 0 := (-1, 0] × B R 0 × B R 0 . Then sup Q - f ≤ C inf Q + f + S L ∞ (Q 0 )
where Q + = (-ω 2 , 0]×B ω 3 ×B ω and Q -= (-1, -1+ω 2 ]×B ω 3 ×B ω ; the positive constants C, R 0 and ω only depend on the dimension and the ellipticity constants λ, Λ.

On the one hand, this new proof is closer to the original argument used by De Giorgi. On the other hand, the second step of the proof from [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] relies on a compactness argument while the proof by W. Wang and L. Zhang is constructive. It is worth mentioning that the second author and C. Mouhot [START_REF] Guerand | Quantitative De Giorgi methods in kinetic theory[END_REF] managed to make constructive the De Giorgi argument. We will give further details below.

Such a Harnack inequality implies in particular the strong maximum principle [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF] relying on a geometric construction known as Harnack chains. The Hölder regularity result of [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF] was extended by Y. Zhu [START_REF] Zhu | Velocity averaging and hölder regularity for kinetic fokker-planck equations with general transport operators and rough coefficients[END_REF] to general transport operators ∂ t +b(v)•∇ v for some non-linear function b.

To finish with, we mention that C. Mouhot and the second author [START_REF] Imbert | The Schauder estimate in kinetic theory with application to a toy nonlinear model[END_REF] initiated the study of a toy non-linear model and F. Anceschi and Y. Zhu continued it in [START_REF] Anceschi | On the nonlinear kinetic Fokker-Planck model: Cauchy problem and diffusion asymptotics[END_REF]. Both studies rely in an essential way on Hölder continuity of weak solutions to the linear equation [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF].

Hypoelliptic estimates. We previously mentioned that in the case where A and B are C ∞ , the study of (1) falls into the realm of the hypoellipticity theory developed by Hörmander in [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. Such a point of view over (1) is adopted in [START_REF] Armstrong | Variational methods for the kinetic Fokker-Planck equation[END_REF]. Let A be the identity matrix for simplicity. We can write (1) by writing X 2 1 f + X 0 f + c = 0 where X 1 and X 0 are the following vector fields:

X 1 = ∇ v , X 0 = (∂ t + v • ∇ x ) and c = B • ∇ v f + S.
Hörmander mentions that "the main point of [his] paper is the proof" of [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]Estimate (3.4)]. In our setting, it reads

f H t,x,v ≤ C( f L 2 t,x H 1 v + (∂ t + v • ∇ x )f L 2 t,x H -1 v )
for some > 0.

In order to derive local properties of solutions such as their Hölder continuity by elliptic regularity methods, it is necessary to be able to work with sub-solutions of (1). In this case, the source term S is supplemented with -µ where µ is an arbitrary Radon measure. Such a source term cannot be treated directly by the previous estimate. Comparison principles are used in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] to gain locally some integrability for non-negative sub-solutions.

Q 1 Q pos (x, v) t
Kinetic equations with integral diffusions. We would like to conclude this review of literature by mentioning the weak Harnack inequality derived in [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] for kinetic equations. The proof also relies on De Giorgi type arguments that are combined with a covering argument, referred to as an Ink-spots theorem and inspired by the elliptic regularity for equations in non-divergence form (see above). The interested reader is referred to the introduction of [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] for further details.

Weak expansion of positivity

The proof of the main result of this article relies on proving that super-solutions of (1) expand positivity along times (Lemma 4.1) and to combine it with the covering argument from [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] mentioned in the previous paragraph. The derivation of the weak Harnack inequality in the present article from the expansion of positivity follows very closely the reasoning in [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF].

In contrast with parabolic equations, it is not possible to apply the Poincaré inequality in v for (t, x) fixed when studying solutions of linear Fokker-Planck equations such as [START_REF] Anceschi | A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients[END_REF]. Instead, if a sub-solution vanishes enough, then a quantity replacing the average in the usual Poincaré inequality is decreased in the future. See θ 0 M in the weak Poincaré inequality in the next paragraph (Theorem 1.4).

We establish the expansion of positivity of super-solutions in the spirit of [START_REF] Ferretti | Growth theorems and Harnack inequality for second order parabolic equations[END_REF]. Given a small cylinder Q pos lying in the past of Q 1 (see Figure 1), Lemma 4.1 states that if a supersolution f lies above 1 in "a good proportion" of Q pos , then it lies above a constant 0 > 0 in the whole cylinder Q 1 . Roughly speaking, such a lemma transforms an information in measure about positivity in the past into a pointwise positivity in the future in a (much) larger cylinder.

We emphasize the fact that in the classical parabolic case, S. N. Kružkov does not need to prove such an expansion of positivity to get Hölder continuity of solutions. But he can not reach the weak Harnack inequality. To get an Hölder estimate, he uses an appropriate Poincaré inequality that can be applied at any time t > 0. Such an approach is not applicable in the x dependent case.

Such a weak propagation of positivity was already proved in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] thanks to a lemma of intermediate values, in the spirit of De Giorgi's original proof. While the proof of this key lemma uses a compactness argument in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF], C. Mouhot and the first author [START_REF] Guerand | Quantitative De Giorgi methods in kinetic theory[END_REF] found a constructive proof of it.

A weak Poincaré inequality

The proof of the expansion of positivity relies on a weak Poincaré inequality. It is worth mentioning that Armstrong and Mourrat prove in [START_REF] Armstrong | Variational methods for the kinetic Fokker-Planck equation[END_REF] a Poincaré inequality. Unfortunately, such a Poincaré inequality cannot be applied to sub-solutions (see the discussion on page 6). The geometric setting of the next theorem is shown in Figure 2 Theorem 1.4 (Weak Poincaré inequality). Let η ∈ (0, 1). There exist R > 1 and θ 0 ∈ (0, 1) depending on dimension and η such that, if 2), then for any non-negative function

Q ext = (-1 -η 2 , 0] × B 8R × B 2R and Q zero = (-1 -η 2 , -1] × B η 3 × B η (see Figure
f ∈ L 2 (Q ext ) such that ∇ v f ∈ L 2 (Q ext ), (∂ t + v • ∇ x )f ∈ L 2 ((-1 -η 2 , 0] × B 8R , H -1 (B 2R )), f ≤ M in Q ext and |{f = 0} ∩ Q zero | ≥ 1 4 |Q zero |, satisfying (∂ t + v • ∇ x )f ≤ H in D (Q ext ) with H ∈ L 2 t,x H -1 v (Q ext ),
we have

(f -θ 0 M ) + L 2 (Q 1 ) ≤ C( ∇ v f L 2 (Qext) + H L 2 t,x H -1 v (Qext)
) for some constant C > 0 only depending on dimension. Remark 7. In the previous statement, A somewhat similar inequality was introduced by W. Wang and L. Zhang for subsolutions of ultraparabolic equations, see for instance [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF]Lemmas 3.3 & 3.4] and the corresponding lemmas in [START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF]. The statements and proofs share similarities and we explain next in what they differ. The main difference between statements comes from the fact that the information in measure in Theorem 1.4, the information in measure

L 2 t,x H -1 v (Q ext ) is a short hand notation for L 2 ((-1 - η 2 , 0] × B 8R , H -1 (B 2R )). t Q ext Q 1 Qzero (x, v)
|{f = 0} ∩ Q zero | ≥ 1 4 |Q zero | comes "from the past" since Q zero is contained in {t ≤ -1} while the functional inequality is stated in Q 1 ⊂ {t > -1}
. This is in contrast with [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF] and [START_REF] Kružkov | A priori bounds for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF]A priori bounds and some properties of solutions of elliptic and parabolic equations[END_REF]; indeed, in these works the information in measure is contained in {-1 < t ≤ 0} and the pointwise bound is derived in the same time interval. For this reason, it is not possible to derive a (weak) Harnack inequality directly from these proofs because no time lap is considered or no positivity is propagated in time. Moreover, we adopt the functional framework from [START_REF] Armstrong | Variational methods for the kinetic Fokker-Planck equation[END_REF] and forget about the equation under study. The main difference in proofs lies on the fact that we avoid using repeatedly the exact form of the fundamental solution of the Kolmogorov equation and we seek for arguments closer to the classical theory of parabolic equations presented for instance in [START_REF] Ladyzhenskaya | tseva, Linear and quasi-linear equations of parabolic type[END_REF] or [START_REF] Lieberman | Second order parabolic differential equations[END_REF]. In contrast with [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF], the information obtained through the log-transform is summarized in only one weak Poincaré inequality (while it is split it several lemmas in [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF]The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF]C α regularity of weak solutions of non-homogeneous ultraparabolic equations with drift terms[END_REF]) and the geometric settings of the main lemmas are as simple as possible. For instance, it is the same for the weak Harnack inequality and for the lemma of expansion of positivity (Lemma 4.1). We also mostly use cylinders respecting the invariances of the equation (see the defintion of Q r (z) in the paragraph devoted to notation), except the "large" cylinders where the equation is satisfied such as Q ext in Theorem 1.4.

The Lie group structure. Eq. ( 1) is not translation invariant in the velocity variable because of the free transport term. But this (class of) equation(s) comes from mathematical physics and it enjoys the Galilean invariance: in a frame moving with constant speed v 0 , the equation is the same. For z 1 = (t 1 , x 1 , v 1 ) and z 2 = (t 2 , x 2 , v 2 ), we define the following non-commutative group product

z 1 • z 2 = (t 1 + t 2 , x 1 + x 2 + t 2 v 1 , v 1 + v 2 ).
In particular, for z = (t, x, v), the inverse element is z -1 = (-t, -x + tv, -v).

Scaling and cylinders. Given a parameter r > 0, the class of equations ( 1) is invariant under the scaling f r (t, x, v) = f (r 2 t, r 3 x, rv).

It is convenient to write S r (z) = (r 2 t, r 3 x, rv) if z = (t, x, v).
It is thus natural to consider the following cylinders "centered" at (0, 0, 0) of radius r > 0:

Q r = (-r 2 , 0] × B r 3 × B r = S r (Q 1 ). Moreover, in view of the Galilean invariance, it is then natural to consider cylinders centered at z 0 ∈ R 1+2d of radius r > 0 of the form: Q r (z 0 ) := z 0 • Q r which is Q r (z 0 ) := z ∈ R 1+2d : z -1 0 • z ∈ Q r (0) := -r 2 < t -t 0 ≤ 0, |x -x 0 -(t -t 0 )v 0 | < r 3 , |v -v 0 | < r .
Organization of the article. In Section 2, the definition of weak sub-solutions, supersolutions and solutions for (1) is recalled and two properties of the log-transform are given. Section 3 is devoted to the proof of the weak Poincaré inequality. In Section 4, we explain how to derive the lemma of expansion of positivity from the weak Poincaré inequality and how to prove the weak Harnack inequality from expansion of positivity by using a covering lemma called the Ink-spots theorem. This last result is recalled in Appendix A. In another appendix, see B, we recall how Hölder regularity can be derived directly from the expansion of positivity of super-solutions. The proof of a technical lemma about stacked cylinders is given in Appendix C.

Notation. The open ball of the Euclidian space centered at c of radius R is denoted by B R (c). The measure of a Lebesgue set A of the Euclidian space is denoted by |A|. The z variable refers to

(t, x, v) ∈ R × R d × R d = R 1+2d . For z 1 , z 2 ∈ R 1+2d , z 1 • z 2 denotes
their Lie group product and z -1 1 denotes the inverse of z 1 with respect to •. For r > 0, S r denotes the scaling operator. A constant is said to be universal if it only depends on dimension and the ellipticity constants λ, Λ appearing in [START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF]. The notation a b means that a ≤ Cb for some universal constant C > 0.

For an open set Ω, D(Ω) denotes the set of C ∞ functions compactly supported in Ω while D (Ω) denotes the set of distributions in Ω.
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2 Weak solutions and Log-transform

Weak solutions

We start with the definition of weak (super-and sub-) solutions of (1).

Definition 2.1 (Weak solutions). Let Ω = I × B x × B v be open. A function f : Ω → R is a weak super-solution (resp. weak sub-solution) of (1) in Ω if f ∈ L ∞ (I, L 2 (B x × B v )) ∩ L 2 (I × B x , H 1 (B v )) and (∂ t + v • ∇ x )f ∈ L 2 (I × B x , H -1 (B v )) and -f (∂ t + v • ∇ x )ϕ dz + A∇ v f • ∇ v ϕ dz -(B • ∇ v f + S)ϕ dz ≥ 0 (resp. ≤ 0)
for all non-negative ϕ ∈ D(Ω). It is a weak solution of (1) in Q if it is both a weak super-solution and a weak sub-solution.

As explained in the introduction, the local boundedness of sub-solutions has been known since [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF]. We give below the version contained in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF].

Proposition 2.1 (Local upper bound for sub-solutions - [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]). Consider two cylinders

Q int = (t 1 , T ] × B rx × B rv and Q ext = (t 0 , T ] × B Rx × B Rv with t 1 > t 0 , r x < R x and r v < R v . Assume that f is a sub-solution of (1) in some cylindrical open set Ω ⊃ Q ext . Then sup Q int f ≤ C( f + L 2 (Qext) + S L ∞ (Qext) )
where C only depends on d, λ, Λ and (t

1 -t 0 , R x -r x , R v -r v ).

Log-transform of sub-solutions

For technicals reasons, the positive part of the opposite of the logarithm is replaced with a more regular function G that keeps the important features of max(0, -ln). The function max(0, -ln) was first considered in [START_REF] Kružkov | A priori bounds for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF]A priori bounds and some properties of solutions of elliptic and parabolic equations[END_REF].

Lemma 2.1 (A convex function).

There exists G : (0, +∞) → [0, +∞) non-increasing and C 2 such that

• G ≥ (G ) 2 and G ≤ 0 in (0, +∞),
• G is supported in (0, 1],

• G(t) ∼ -ln t as t → 0 + ,

• -G (t) ≤ 1 t for t ∈ (0, 1 4 ]. Lemma 2.2 (Log-transform of solutions). Let ∈ (0, 1 4 ] and f be a non-negative weak super-solution of (1) in a cylinder

Q ext = (t 0 , T ] × B Rx × B Rv . Then g = G( + f ) satisfies (∂ t + v • ∇ x )g + λ|∇ v g| 2 ≤ ∇ v • (A∇ v g) + B • ∇ v g + -1 |S| in Q ext , i.e. it is a sub-solution of the corresponding equation in Q ext . Proof. We first note that g ∈ L ∞ (Q ext ) since 0 ≤ g ≤ G( ). Moreover, ∇ v g = G ( +f )∇ v f with |G ( + f )| ≤ |G ( )|. In particular, g ∈ L 2 ((t 0 , T ] × B Rx , H 1 (B Rv )).
In order to obtain the sub-equation, it is sufficient to consider the test-function G ( + f )Ψ in the definition of super-solution for f . The following observation is key in Moser's reasoning since the square of the L 2 -norm of ∇ v g is controlled by the mass of g. Lemma 2.3 (The mass of g). Let f be a non-negative weak sub-solution of (1) in a cylinder

Q ext = (t 0 , T ]×B rx ×B rv and Q int = (t 1 , T ]×B Rx ×B Rv with t 1 > t 0 , r x < R x and r v < R v . Then λ 2 Q int |∇ v g| 2 ≤ C Qext g(τ ) + 1 + -1 S L ∞ (Qext)
where C depends on dimension, λ, Λ, Q int and Q ext .

Proof. Consider a smooth cut-off function Ψ valued in [0, 1], supported in Q ext and equal to 1 in Q int and use Ψ 2 as a test-function for the sub-equation satisfied by g and get

λ |∇ v g| 2 Ψ 2 ≤ -2 A∇ v g • Ψ∇ v Ψ + g(∂ t + v • ∇ x )Ψ 2 + (B • ∇ v g + -1 |S|)Ψ 2 ≤ λ 4 |∇ v g| 2 Ψ 2 + C(1 + Qext g) + λ 4 |∇ v g| 2 Ψ 2 + C -1 S L ∞ (Qext) .
This yields the desired estimate.

Kružkov's proof in the parabolic case

In this subsection, we discuss how Kružkov proved in [START_REF] Kružkov | A priori bounds for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF]A priori bounds and some properties of solutions of elliptic and parabolic equations[END_REF] (see also [START_REF] Kružkov | A priori estimates and certain properties of the solutions of elliptic and parabolic equations[END_REF]) Hölder continuity of solutions of parabolic equations corresponding to solutions u of (1) such that the solution and the coefficients A, B and S are independent of the x variable. It relies on the local boundedness of non-negative sub-solutions [20, Theorem 2.1] and a Poincaré inequality due to Sobolev and Ilin.

A Poincaré inequality. We start with presenting the functional inequality [22, (1.8)]:

for any u ∈ H 1 (B r ) and N ⊂ B r such that |N | ≥ c 0 r d , r -2d/p u 2 L p (Br) ≤ c r -d+2 ∇u 2 L 2 (Br) + r -d u 2 L 2 (N )
for p ∈ [2, 2d/(d -2)] for d ≥ 3 and p > 0 arbitrary for d = 2 and c = c(d, p). In particular, if N = {u = 0} and p = 2, this implies

u L 2 (Br) ≤ C ∇u L 2 (Br) (3) 
for some C = C(d, r).

Decrease of the oscillation. Kružkov proves a local Hölder estimate [20, Theorem 3.1] by proving that the oscillation of a bounded solution decreases by a universal factor strictly smaller than 1. We change here some constants in his proof but we follow exactly the same reasoning. See [20, p. 187-190]. Consider a non-negative super-solution u = u(t, v) of ( 1) and assume that

|{u ≥ 1} ∩ (-1, 0] × B 1 | ≥ 1 2 |B 1 |. 1 (4) 
We then prove that u ≥ 0 in (-θ 2 , 0] × B θ . Such a result implies the decrease of oscillation and in turn yields the Hölder estimate.

A pointwise in time estimate. In order to get a lower bound on u in (-θ 2 , 0] × B θ , Kružkov first proves that there exist ω, β, h > 0 such that for a.e. t ∈ (-ω, 0], we have

|{x ∈ B β : u ≥ h}| ≥ (1/4)|B β |. (5) 
In words, the lower bound on the volume of {u ≥ 1} is made pointwise in time. It is necessary to apply the Poincaré inequality (3) after freezing the time variable.

To get such a result, Kružkov first considers µ(t) = |{u(t) ≥ 1} ∩ B 1 | and remarks that (4) implies that there exists ω small and τ ∈ (-1, -ω] so that u is defined a.e. in B 1 and µ(τ

) ≥ 1/2-ω 1-ω |B 1 |. In particular, considering w = G(u + h) B β w(τ, v) dv ≤ G(h)|{u(τ ) ≤ 1} ∩ B 1 | ≤ G(h) 1 - 1/2 -ω 1 -ω |B 1 | ≤ 2 3 G(h)|B β | the last inequality holding true if β is chosen so that 2(1 -ω)β d = 3/2.
He then uses the evolution of the mass of w with time. Let us assume B = 0 and S = 0 for simplicity. Using Lemma 2.2, we can get that for a.e. t ∈ (τ, 0],

B β w(t, v) dv ≤ B β w(τ, v) dv + C.
Since for u(t, v) ≤ h, we also have w(t, v) ≥ G(2h), we can write for a.e. t ∈ (-ω, 0],

G(2h)|{u(t) ≤ h} ∩ B β | ≤ B β w(t, v) dv ≤ B β w(τ, v) dv + C ≤ 2 3 G(h)|B β | + C.
This implies (5) by choosing h small enough.

The decrease of oscillation. With (5) at hand, Kružkov then considers g = G((u + )/h) and combines i) local boundedness of non-negative subsolutions with ii) the Poincaré inequality (3) and iii) the rough estimate of the mass of g given by Lemma 2.3 to get for θ small enough, sup

(-θ 2 ,0]×B θ g 2 ≤ C (-ω,0]×B β g 2 dt dv (local boundedness of subsolutions) ≤ C (-ω,0]×B β |∇ v g| 2 dt dv (Poincaré inequality) ≤ C (-ω,0]×B β g dt dv + 1 (Lemma 2.3) ≤ CG( /h).
This implies that G((u + )/h) ≤ C G( /h) in Q θ and since G(t) ∼ -ln t as t → 0 + , we get the desired lower bound on u in Q θ by choosing small enough.

A weak Poincaré inequality

In order to prove Theorem 1.4, we first derive a local Poincaré inequality (Lemma 3.1) with an error function h due to the localization. This function h satisfies

L K h = f L K Ψ, in (a, b) × R 2d , h = 0, in {a} × R 2d , (6) 
where

L K = (∂ t + v • ∇ x ) -∆ v
is the Kolmogorov operator and Ψ is a cut-off function equal to 1 in Q 1 . We will estimate h in Lemma 3.2 below.

Lemma 3.1 (A local estimate). Let

Q ext = (a, 0] × B Rx × B Rv be a cylinder such that Q 1 ⊂ Q ext , and let Ψ : R 2d+1 → [0, 1] be C ∞ , supported in Q ext and Ψ = 1 in Q 1 . Then for any function f ∈ L 2 (Q ext ) such that ∇ v f ∈ L 2 (Q ext ) and (∂ t + v • ∇ x )f ≤ H in D (Q ext ) with H ∈ L 2 ((a, 0] × B Rx , H -1 (B Rv )), we have (f -h) + L 2 (Q 1 ) ≤ C( ∇ v f L 2 (Qext) + H L 2 ((a,0]×B Rx ,H -1 (B Rv )) )
where h satisfies the Cauchy problem (6) and C = c(a)(1 + ∇ v Ψ ∞ ) for some constant c(a) only depending on |a|.

Proof. Since H ∈ L 2 ((a, 0] × B Rx , H -1 (B Rv )), there exists H 0 , H 1 ∈ L 2 (Q ext ) such that H = ∇ v • H 1 + H 0 and such that H 0 L 2 (Qext) + H 1 L 2 (Qext) ≤ 2 H L 2 ((a,0]×B Rx ,H -1 (B Rv ))
(see for instance [START_REF] Evans | Partial differential equations[END_REF]). The function g = f Ψ satisfies

L K g ≤ ∇ v • H1 + H0 + f [(∂ t + v • ∇ x )Ψ -∆ v Ψ] in D ((a, 0) × R 2d ) with H1 = (H 1 -∇ v f )Ψ and H0 = H 0 Ψ -H 1 ∇ v Ψ -∇ v Ψ • ∇ v f . We thus get L K (g -h) ≤ H in D ((a, 0) × R 2d )
with H = ∇ v • H1 + H0 . We then multiply by (g -h) + to get the natural energy estimate for all T, T ∈ (a, 0) and > 0,

(g -h) 2 + (T, x, v) dx dv + T a |∇ v (g -h) + | 2 dt dx dv ≤2 0 a | -H1 • ∇ v (g -h) + + H0 (g -h) + | dt dx dv ≤ 1 2 ∇ v (g -h) + 2 L 2 ((a,0]×R 2d ) + 2 H1 2 L 2 ((a,0]×R 2d ) + 2 (g -h) + 2 L 2 ((a,0]×R 2d ) + 1 2 H0 2 L 2 ((a,0]×R 2d ) .
Remark that we can deal with the two terms of the left hand side separately so that we can consider the two parameters T and T . Writing • L 2 for • L 2 ((a,0]×R 2d ) , we get after integrating in T from a to 0, and choosing T = 0

(g -h) + 2 L 2 ≤ -2 a (g -h) + 2 L 2 -a H1 2 L 2 - a 2 H0 2 L 2 .
Then remark that the function

(g -h) + equals (f -h) + in Q 1 and that H1 L 2 ((a,0]×R 2d ) ≤ H 1 L 2 (Qext) + ∇ v f L 2 (Qext) , H0 L 2 ((a,0]×R 2d ) ≤ H 0 L 2 (Qext) + ∇ v Ψ ∞ ( H 1 L 2 (Qext) + ∇ v f L 2 (Qext) ).
We get the desired inequality by combining the three previous inequalities and choosing = -(4a) -1 .

In view of Lemma 3.1, in order to prove Theorem 1.4, it is sufficient to prove that if the function f satisfies

|{f = 0} ∩ Q zero | ≥ 1 4 |Q zero |,
then the function h given by the Cauchy problem ( 6) is bounded from above by θ 0 M for some universal parameter θ 0 ∈ (0, 1).

Lemma 3.2 (Control of the localization term). Let η ∈ (0, 1]. There exist a (large) constant R > 1 and a (small) constant θ 0 ∈ (0, 1) both depending on the dimension and η, and a

C ∞ cut-off function Ψ : R 2d+1 → [0, 1], supported in Q ext = (-1 -η 2 , 0] × B 8R × B 2R
and equal to 1 in Q 1 , such that for all non-negative bounded function f :

Q ext → R satisfying |{f = 0} ∩ Q zero | ≥ 1 4 |Q zero |, (7) 
the solution h of the following initial value problem Remark 10. Theorem 1.4 will be used in the proof of Lemma 4.1 about the expansion of positivity of super-solutions. The parameter η will be then chosen after choosing θ.

L K h = f L K Ψ in (-1 -η 2 , 0) × R 2d h = 0 in {-1 -η 2 } × R 2d satisfies: h ≤ θ 0 f L ∞ (Qext) in Q 1 . Q ext Q 1 t = -1 -T Q zero
The proof of Lemma 3.2 requires the following test-function whose construction is elementary.

Lemma 3.3 (Cut-off function). Given η ∈ (0, 1] and T ∈ (0, η 2 ), there exists a smooth function

Ψ 1 : [-1 -η 2 , 0] × R d × R d → [0, 1], supported in [-1 -η 2 , 0] × B 8 × B 2 , equal to 1 in (-1, 0] × B 1 × B 1 , such that (∂ t + v • ∇ x )Ψ 1 ≥ 0 everywhere and (∂ t + v • ∇ x )Ψ 1 ≥ 1 in (-1 -η 2 , -1 -T ] × B 1 × B 1 . Proof. Consider Ψ 1 (t, x, v) = ϕ 1 (t)ϕ 2 (x -tv)ϕ 3 (v) with • a smooth function ϕ 1 : [-1 -η 2 , 0] → [0, 1] equal to 1 in [-1, 0] with ϕ 1 (-1 -η 2 ) = 0, ϕ 1 ≥ 0 in [-1 -η 2 , 0] and ϕ 1 = 1 in [-1 -η 2 , -1 -T ];
• a smooth function ϕ 2 : R d → [0, 1] supported in B 4 and equal to 1 in B 3 ;

• a smooth function ϕ 3 : R d → [0, 1] supported in B 2 and equal to 1 in B 1 .

It is then easy to check that the conclusion of the lemma holds true.

We can now turn to the proof of Lemma 3.2.

Proof of Lemma 3.2. If f = 0 in Q ext , then h = 0. We thus can assume from now on that f is not identically 0. We next reduce to the case

f L ∞ (Qext) = 1 by considering f / f L ∞ (Qext) .
We introduce a time lap T between the top of the cylinder Q zero and the bottom of the cylinder Q 1 , see Figure 3.

Fix T = η 2 /8. Since |Q zero ∩ {t ≥ -1 -T }| = 1 8 |Q zero |, then |{f = 0} ∩ Q zero ∩ {t ≤ -1 -T }| ≥ 1 8 |Q zero |. ( 8 
)
Let R > 1 to be chosen later. We consider the cut-off function

Ψ(t, x, v) = Ψ 1 (t, x/R, v/R). Remark that Ψ is supported in Q ext and equal to 1 in (-1, 0] × B R × B R . Moreover, L K Ψ(t, x, v) = (∂ t + v • ∇ x )Ψ 1 (t, x/R, v/R) -R -2 ∆ v Ψ 1 (t, x/R, v/R),
where in the last equation v • ∇ x means the scalar product of the value of third variable in Ψ (here it is v R ) with the gradient in the second variable. We then have

L K (h -Ψ) = -(1 -f )(∂ t + v • ∇ x )Ψ 1 (t, x/R, v/R) + 1 -f R 2 ∆ v Ψ 1 (t, x/R, v/R

) and we can write

h -Ψ = -P R + E R (P R for positive and E R for error) with P R and E R solutions of the following Cauchy problems in (-1 -η 2 , 0) × R 2d ,

L K P R = (1 -f )(∂ t + v • ∇ x )Ψ 1 (t, x/R, v/R), L K E R = 1 -f R 2 ∆ v Ψ 1 (t, x/R, v/R), and P R = E R = 0 at time t = -1 -η 2 .
We claim that there exist constants C > 0 and δ 0 > 0 depending on the dimension and η (in particular independent of R) such that

E R ≤ CR -2 and P R ≥ δ 0 in Q 1 . (9) 
As far as the estimate of E R is concerned, it is enough to remark that

L K E R ≤ C 0 R -2 for some constant C 0 = ∆ v Ψ 1 L ∞
only depending on d, λ, Λ, η (in particular not depending on R). The maximum principle then yields the result for some universal constant C. As far as P R is concerned, we remark that

L K P R ≥ I Z in (-1 -η 2 , 0] × R 2d
where

Z = {f = 0} ∩ Q zero ∩ {t ≤ -1 -T }.
We use here the fact that

(∂ t + v • ∇ x )Ψ 1 ≥ 1 in (-1 -η 2 , -1 -T ) × R 2d . Let P be such that L K P = I Z in (-1 -η 2
, 0] × R 2d and P = 0 at the initial time -1 -η 2 . The maximum principle implies that P R ≥ P in the time interval (-1 -η 2 , 0], and in particular in Q 1 .

We now claim that P ≥ δ 0 in Q 1 for some constant δ 0 > 0 depending on the dimension and η. Indeed, one can use the fundamental solution Γ of the Kolmogorov equation and write

P (t, x, v) = Γ(z, ζ)I Z (ζ) dζ ≥ 1 8 m|Q zero | = δ 0 , with m = min Q 1 ×Qzero∩{t≤-1-T }
Γ. The claim ( 9) is now proved.

Inequalities from [START_REF] Dibenedetto | Harnack inequalities for quasi-minima of variational integrals[END_REF] imply that

h ≤ 1 -δ 0 + CR -2 in Q 1 .
This yields the desired result with θ 0 = 1 -δ 0 /2 for R large enough. Note in particular that R only depends on C and δ 0 and consequently depends on the dimension and η.

The weak Harnack inequality

Before proving the weak Harnack inequality stated in Theorem 1.1, we investigate how Eq. ( 1) expands positivity of super-solutions. 

Q whi Q 1 Q pos
Q pos = (-1 -θ 2 , -1] × B θ 3 × B θ
and let R be the constant given by Lemma 3.2 which depends on θ, d, λ, Λ. There exist η 0 , 0 ∈ (0, 1), only depending on θ, d, λ, Λ, such that for

Q whi := (-1 -θ 2 , 0] × B 9R × B 3R
and any non-negative super-solution f of (1) in some cylindrical open set Ω ⊃ Q whi and

S L ∞ (Q whi ) ≤ η 0 and such that |{f ≥ 1} ∩ Q pos | ≥ 1 2 |Q pos |, we have f ≥ 0 in Q 1 .
Remark 11. The parameter θ will be chosen in such a way that the stacked cylinder Q pos m is contained in Q 1 (see the definition of stacked cylinders in Appendix A). The cylinder Q pos m can be thought of as the union of m copies of Q pos stacked above (in time) of Q pos .

Such cylinders are used in the covering argument used in the proof of the weak Harnack inequality and the parameter m ∈ N only depends on dimension.

Proof of Lemma 4.1. We consider g = G(f + ). We remark that g ≤ G( ) since f is non-negative and G is non-increasing. We also remark that

|G (f + )| ≤ |G ( )| ≤ -1 since f ≥ 0, see Lemma 2.1.
We know from Lemma 2.2 that g is a non-negative sub-solution of (1) with S replaced with SG (f + ). In particular,

(∂ t + v • ∇ x )g ≤ H with H = ∇ v • (A∇ v g) + B • ∇ v g + -1 |S|. Recall that for a set Q ⊂ R 2d+1 , S (r) (Q) = {(r 2 t, r 3 x, rv) for z = (t, x, v) ∈ Q}. We introduce η ∈ (0, 4 5 1 4d+2
θ) and ι > 0 two parameters depending on θ to be chosen later in the proof.

We are going to apply successively: the L 2 -L ∞ estimate from Q 1 to a slightly larger cylinder Q 1+ι for an accurate choice of ι; the (scaled) weak Poincaré inequality in the big cylinder Qext = S (1+ι) (Q ext ) with Q ext = (-1 -η 2 , 0] × B 8R × B 2R . Then we estimate the L 2 -norm of ∇ v g by the square root of its mass in a cylinder larger than Qext , namely S (1+ι) 2 (Q ext ) ⊂ Q whi . This is illustrated in Figure 5.

Q whi Qext Q 1 S (1+ι) (Q 1 ) Q pos S (1+ι) (Q zero )
Figure 5: Intermediate cylinders in the proof of the expansion of positivity. The great parts are obtained after a scaling with a parameter 1 + ι close to 1. This is necessary in order to keep f vanishing in a "good ratio" of S (1+ι) (Q zero ).

The remainder of the proof is split into several steps. We explain in Step 1 how to choose ι to ensure that cylinders are properly ordered and η so that we retain enough information from the assumption |{f ≥ 1}∩Q pos | ≥ 1 2 |Q pos |. We then apply the aforementioned successive estimates in Step 2, before deriving the lower bound on f in Step 3.

Step 1. Choose ι small enough so that Q ext ⊂ Qext ⊂ S (1+ι) 2 (Q ext ) ⊂ Q whi . We only need to check the last inclusion. We choose ι > 0 small enough so that (1 + ι) 4 (1 +

η 2 ) ≤ 1 + θ 2 , 2(1 + ι) 2 ≤ 3 and 8(1 + ι) 6 ≤ 9. Since η ∈ (0, 4 5 1 4d+2 θ), to satisfy the first inequality it is enough to satisfy (1 + ι) 4 1 + 4 5 1 2d+1 θ 2 ≤ 1 + θ 2 . So we pick ι = min 5 1 2d+1 (1+θ 2 ) 5 1 2d+1 +4 1 2d+1 θ 2 1/4 -1, 9 8 1/6 -1, 3 2 1/2 -1 . Recall that Q zero = (-1 -η 2 , -1] × B η 3 × B η . In particular, S (1+ι) (Q zero ) = (-(1 + ι) 2 (1 + η 2 ), -(1 + ι) 2 ] × B (1+ι) 3 η 3 × B (1+ι)η . We next pick η ∈ (0, 4 5 1 4d+2 θ) big enough so that |Q pos \ S (1+ι) (Q zero )| ≤ 1 4 |S (1+ι) (Q zero )|.
It is then enough to satisfy θ ≤ (5/4)

1 4d+2
(1 + ι)η so we pick η = (4/5)

1 4d+2
(1 + ι) -1 θ. In particular, the previous volume condition implies that

|{g = 0} ∩ S (1+ι) (Q zero )| ≥ |{f ≥ 1} ∩ S (1+ι) (Q zero )| ≥ 1 4 |S (1+ι) (Q zero )|.
Step 2. With such an information at hand, we know that there exists θ 0 ∈ (0, 1), only depending on η and thus only depending on θ, such that

sup Q 1 (g -θ 0 G( )) + (g -θ 0 G( )) + L 2 (Q 1+ι ) + η 0 from Proposition 2.1 ι ∇ v g L 2 ( Qext) + (η 0 / ) + η 0 from Theorem 1.4 Q whi g + 1 + η 0 / 1 2 + (η 0 / ) + η 0 from Lemma 2.3 (G( ) + 2) 1 2 + 2 for η 0 ≤ ≤ 1 G( ) for such that G( ) ≥ 2.
Remark that it has been necessary to scale g before applying Theorem 1.4. This generates a constant depending on ι. This is emphasized by writing ι . But ι only depends on dimension, λ, Λ and θ.

Step 3. The previous computation yields

g ≤ C G( ) + θ 0 G( ) in Q 1
for some θ 0 ∈ (0, 1) depending on universal constants and θ. Since G( ) → +∞ (we can pick and η 0 small enough only depending on the universal constants and θ) , we thus have

G(f + ) = g ≤ 1 + 2θ 0 3 G( ) in Q 1 .
Now recall that G(t) ∼ -ln t as t → 0+ and -G (t) ≤ 1 t for t ∈ 0, 1 4 . The previous inequality thus implies that as → 0+,

ln(f + ) ≥ 2 + θ 0 3 ln .
This yields the result with 0 = 2+θ 0 3

-> 0.
Before iterating the lemma of expansion of positivity, we state and prove a straightforward consequence of it that will be used when applying the Ink-spots theorem. Lemma 4.2. Let m ≥ 3 be an integer and R be given by Lemma 4.1 for θ = m -1/2 . There exists a constant M > 1 only depending on m, d, λ, Λ such that for all non-negative supersolution f (1) with S = 0 in some cylindrical open set

Ω ⊃ (-1, m] × B 9Rm 3/2 × B 3Rm 1/2 , such that |{f ≥ M } ∩ Q 1 | ≥ 1 2 |Q 1 |, then f ≥ 1 in Qm 1 = (0, m] × B m+2 × B 1 . Proof. Let θ = m -1 2 so that Qm 1 ⊂ (0, θ -2 ] × B θ -3 × B θ -1 .
We apply Lemma 4.1 to f M with Q 1 and Qm 1 taking the role of Q pos and Q 1 thanks to a rescaling argument. This yields that

f ≥ 0 M in (0, θ -2 ] × B θ -3 × B θ -1 .
We then pick M = 1/ 0 and we conclude the proof.

When deriving the weak Harnack inequality, we will need to estimate how the lower bound deteriorates with time. Indeed such an information is needed in the Ink-spots theorem: since cylinders can "leak" out of the set F , a corresponding error has to be estimated, see the term Cmr 2 0 in Theorem A.1. The geometric setting is the one from Theorem 1.1. In particular, recall that

Q + = (-ω 2 , 0] × B ω 3 × B ω and Q -= (-1, -1 + ω 2 ] × B ω 3 × B ω
where ω is small and universal. It has to be small enough so that when spreading positivity from a cylinder Q r (z 0 ) from the past, i.e. included in Q -, the union of the stacked cylinders where positivity is expanded captures Q + . Then the radius R 0 in the statement of weak Harnack inequality is chosen so that the expansion of positivity Proof of Theorem 1.1. We start the proof with general comments about the geometric setting. The proof is going to use a covering argument through the application of the Inkspots theorem. To apply this result, we will consider an arbitrary cylinder Q contained in Q -. The parameter ω used in the definition of Q -and Q + is chosen small enough (ω ≤ 10 -2 ) so that the cylinder Q + is "captured" when stacking cylinders (Lemma 4.3) and propagating positivity (Lemma 4.4). We also pick the parameter R 0 in the definition of the cylinder Q 0 large enough so that the stacked cylinders do not leak out of Q 0 ; we impose R 0 ≥ 18R 1/2 where R 1/2 is given by Lemma 4.1 for θ = 1/2. We also impose R 0 ≥ 9R m -1/2 m 3/2 ω 3 where R m -1/2 is given by Lemma 4.1 with θ = m -1/2 in order to be in position to apply Lemma 4.2 to cylinders contained in Q -, hence of radius smaller than ω.

-ω 2 t 0 + T N (x, v) t Q - Q + Q[N ] Q[N + 1]
We first classically reduce to the case inf

Q + f ≤ 1 and S = 0. Considering f (t, x, v) = f (t, x, v) + S L ∞ t
, f is a super-solution of the same equation with no source term (S = 0) and the weak Harnack inequality for f implies the one for f . So from now we assume S = 0.

Considering next f = f /(inf Q + f + 1) reduces to the case inf Q + f ≤ 1.
We then aim at proving that Q -f p (z) dz is bounded from above by a universal constant for some universal exponent p. This amounts to prove that for all k ∈ N,

|{f > M k } ∩ Q -| ≤ C w.h.i. (1 -μ) k
for some universal parameters μ ∈ (0, 1), M > 1 and C w.h.i. > 0 to be determined later. We can see that this property would be enough by transposing it to the continuous case (k real and above 1) and by application of the layer cake formula to Q -f p (z) dz.

We are going to apply Theorem A.1 with µ = 1/2. We pick m ∈ N such that m+1 m (1c/2) ≤ 1 -c/4. Then the constant M > 1 is given by Lemma 4.2.

We prove the result by induction. For k = 1, we simply choose μ ≤ 1/2 and C w.h.i. such that |Q -| ≤ 1 2 C w.h.i. . Now assume that the claim holds true for k ≥ 1 and let us prove it for k + 1. We thus consider

E = {f > M k+1 } ∩ Q -and F = {f > M k } ∩ Q 1 .
These two sets are bounded and measurable and such that

E ⊂ F ∩ Q -. We consider a cylinder Q = Q r (t, x, v) ⊂ Q -such that |Q ∩ E| > 1 2 |Q|, that is to say |{f > M k+1 } ∩ Q| > 1 2 |Q|.
We first prove that r is small, i.e. we determine a universal r 0 which depends on k such that r < r 0 . Lemma 4.4 (after translation in time) implies that f ≥ M k+1 (r 2 /4)

p 0 in Q + . In particular, 1 ≥ inf Q + f ≥ M k+1 (r 2 /4) p 0 so r 2p 0 ≤ 4 p 0 M -(k+1) . We thus choose r 0 = 2M -k+1 2p 0 . We next prove that Qm ⊂ F , i.e. Qm ⊂ {f > M k }.
In order to do so, we apply Lemma 4.2 to f /M k after rescaling Q in Q 1 where we assume ω ≤ (2m + 3) -1/2 to be able to rescale.

By Theorem A. The proof is now complete.

The full Harnack inequality is a direct consequence of the local boundedness of subsolutions and the weak Harnack inequality.

Proof of Theorem 1.3. Combine Proposition 2.1 and Theorem 1.1 and rescale to reach the result. See for example [START_REF] Li | A note on the harnack inequality for elliptic equations in divergence form[END_REF] for more details.

A Appendix: the Ink-spots theorem

In order to state the Ink-spots theorem, we need to define stacked cylinders. Given Q = Q r (t, x, v) and m ∈ N, Qm denotes the cylinder {(t, x, v) : 0 < t -t 0 ≤ mr 2 , |x -x 0 -(tt 0 )v 0 | < (m + 2)r 3 , |v -v 0 | < r}. We recall that Q -= (-1, -1 + ω 2 ] × B ω 3 × B ω for some constant ω ∈ (0, 1).

Theorem A.1 (Ink-spots - [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF]). Let E and F be two bounded measurable sets of R × R 2d with E ⊂ F ∩ Q -. We assume that there exist two constants µ, r 0 ∈ (0, 1) and an integer m ∈ N such that for any cylinder Q ⊂ Q -of the form Q r (z 0 ) such that |Q∩E| ≥ (1-µ)|Q|, we have Qm ⊂ F and r < r 0 . Then

|E| ≤ m + 1 m (1 -cµ) |F ∩ Q -| + Cmr 2 0
where c ∈ (0, 1) and C > 0 only depend on dimension d.

Remark 12. This corresponds to [18, Corollary 10.1] with Q -instead of Q 1 , i.e. the Inkspots theorem with leakage, with s = 1. Indeed, the statement in [START_REF]The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF] is more general since the cylinders are of the form z 0 • Q r with Q r = (-r 2s , 0] × B r 1+2s × B r for some s ∈ (0, 1]. In the statement above, we only deal with s = 1.

B Appendix : local Hölder estimate

The Hölder estimate from Theorem 1.2 is classically obtained by proving that the oscillation of the solution decays by a universal factor when zooming in. Such an improvement of oscillation is obtained from Lemma 4.1 with θ = 1.

Of course, it is not necessary to prove this lemma in order to prove the Harnack inequality since the Hölder estimate can be derived from it. Eventhough, we provide a proof to emphasize that it can be easily derived from Lemma 4.1.

Lemma B.1 (Decrease of oscillation). Let R > 0 be such that Q R ⊃ (-2, 0] × B 9R 1 × B 3R 1 with R 1 universal given by Lemma 4.1 with θ = 1. There exist (small) universal constants η 0 , 0 > 0 such that for any solution f of (1) in some cylindrical open set

Ω ⊃ Q R such that 0 ≤ f ≤ 2 in Q R and S L ∞ (Q R) ≤ η 0 , then osc Q 1 f ≤ 2 -0 .
We remark T N ≤ -t 0 ≤ 1 implies that (2 N r) 2 ≤ 3 4 + r 2 ≤ 1 and in particular 2 N r ≤ 1. If zk = (t k , x k , v k ) ∈ Q[k] for k ≤ N then there exists (t, x, v) ∈ Q 1 such that zk = z 0 •(T k , 0, 0)•((2 k r) 2 t, (2 k r) 3 x, 2 k rv). This implies that x k = x 0 +T k v 0 +(2 k r) 2 tv 0 +(2 k r) 3 x and v k = v 0 + 2 k rv and since z 0 ∈ Q -,

|x k | ≤ ω 3 + 2ω + 1 ≤ 2 and |v k | ≤ ω + 1 ≤ 2. In particular Q[k] ⊂ (-1, 0] × B 2 × B 2 .
We are left with proving that Q

[N ] ⊂ Q[N ].
If R ≥ ρ, then the conclusion follows from the fact that R/2 ≤ 2 N r (since T N +1 > 0). Let us deal with the case R ≤ ρ. In view of the definitions of these cylinders, this is equivalent to

Q ρ/2 (z) ⊂ Q 2 N r with z = (-T N , 0, 0) • z -1 0 • (-ρ 2 , 0, 0).
In order to prove this inclusion, we first estimate 2 N r from below. Since t 0 + T N +1 > 0 and -t 0 ≥ 1-ω 2 , we have (4/3)(4 N +1 -1)r 2 ≥ 1-ω 2 and in particular 4 N r 2 ≥ (1/4)(3/4-7/4ω 2 ) ≥ 1/8. We conclude that

2 N r ≥ 1/(2 √ 2). (10) 
With such a lower bound at hand, we now compute z = (R 2 -ρ 2 , -x 0 +(t 0 +ρ 2 )v 0 , -v 0 ) and get for z ∈ Q ρ/2 , z • z = (R 2 -ρ 2 + t, -x 0 + (t 0 + ρ 2 )v 0 + x -tv 0 , v -v 0 ) ∈ Q 2ρ . Indeed, -2ρ 2 < R 2 -ρ 2 + t ≤ 0 and | -x 0 + (t 0 + ρ 2 )v 0 + x -tv 0 | ≤ ω 3 + 3ω + (ρ/2) 3 ≤ 2ρ 3 and |v -v 0 | ≤ 2ρ. It is thus sufficient to pick ω such that ρ ≤ 1/(2 √ 2) to get the desired inclusion. This is true for ω ≤ 10 -2 .
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 1 Figure 1: Expansion of positivity.
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 2 Figure 2: Geometric setting of the weak Poincaré inequality.
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 3 Figure 3: Reducing to the case with a time lap.
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 4 Figure 4: Geometric setting of the expansion of positivity lemma. It is the same as the one of the weak Poincaré inequality, except that Q ext and Q zero are replaced with Q whi and Q pos . Here, Q pos denotes a set "in the past" where {f ≥ 1} occupies half of it.
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 6 Figure 6: Stacking cylinders above an initial one contained in Q -. We see that the stacked cylinder obtained after N + 1 iterations by doubling the radius leaks out of the domain. This is the reason why Q[N +1] is chosen in a way that it is contained in the domain and its "predecessor" is contained in Q[N ]. Notice that the cylinders Q[k] are in fact slanted since they are not centered at the origin. We also mention that Q[N + 1] is choosen centered if the time t 0 + T N is too close to the final time 0.
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 210101 1, we conclude thanks to the induction assumption that|{f > M k+1 } ∩ Q -| ≤ (1 -c/4) C w.h.i. (1 -µ) k + Cmr c/4) C w.h.i. (1 -µ) k + CmM -Then pick μ small enough so that M -1/p 0 ≤ (1 -µ) and μ ≤ c4 and get,≤ C w.h.i. (1 -c/4) 1 + C -1 w.h.i. CmM μ) k .Now pick C w.h.i. large enough (depending on c, C, m and M -1/p 0 ) and get,≤ C w.h.i. (1 -c/4)(1 -μ) k ≤ C w.h.i. (1 -μ) k+1 .

In[START_REF] Kružkov | A priori estimates and certain properties of the solutions of elliptic and parabolic equations[END_REF], the radius of the cylinder is r > 0.

lemma can be applied as long as new cylinders are stacked over previous ones. These two facts are stated precisely in the following lemma.

In order to avoid the situation where the last stacked cylinder (see Q[N + 1] in the next lemma) leaks out of the domain where the equation is satisfied, we choose it in a way that we can use the information obtained in the previous cylinder Q[N ]: the "predecessor" of 6). 

These cylinders satisfy

where

). The proof of this lemma is posponed until Appendix C. With such a technical lemma at hand, expansion of positivity for large times follows easily.

Lemma 4.4 (Expansion of positivity for large times). Let R 1/2 given by Lemma 4.1 with θ = 1/2. There exist a universal constant p 0 > 0 such that, if f is a non-negative weak super-solution of (1) with S = 0 in some cylindrical open set

for some A > 0 and for some cylinder

Proof. We first apply Lemma 4.

. We then apply it to f /(A 0 ) and get

. . , N . We then apply Lemma 4.1 one more time and get

We finally turn to the proof of the main result of this paper, Theorem 1.1.

In the former case, Lemma 4.1 implies that f ≥ 0 in Q 1 while in the latter, we simply consider f = 2-f , apply Lemma 4.1 to this new function and get f ≤ 2 -0 in Q 1 . In both cases, we get the desired reduction of oscillation:

Deriving Theorem 1.2 from Lemma B.1 is completely standard but we provide details for the sake of completeness and for the reader's convenience.

Proof of Theorem 1.2. Let f be a solution of (1) in Q 1 . By scaling, we can reduce to the case

In order to prove that f is Hölder continuous in Q 1/2 , it is sufficient to prove that for all z 0 ∈ Q 1/2 and r ∈ (0, 1/(9R 1 )), osc Qr(z 0 ) f ≤ C α r α for some universal constants α ∈ (0, 1) and C α .

We reduce to the case z 0 = 0 by using the invariance of the equation by the transformation z → z 0 • z and we simply prove

for some C and δ 0 = 0 /2 ∈ (0, 1) universal. By scaling, this amounts to prove that if

Remark that the L ∞ bound of S is reduced when zooming in. We now apply Lemma B.1 and conclude.

C Appendix: stacking cylinders

Proof of Lemma 4.3. We first check that the sequence of cylinders is well defined for ω < 1/ √ 5, say. Since r ≤ ω, we have t 0 + T 1 ≤ -1 + ω 2 + 4r 2 < 0 and we know that there exists N ≥ 1 such that T N < -t 0 ≤ T N +1 .

We check next that

we simply remark that ω ≤ ρ to conclude. In the other case, when R ≥ ρ, we have to prove that Q