Detection of Removed Objects in 3D Meshes Using Up-to-Date Images for Mixed-Reality Applications
Résumé
Precise knowledge of the real environment is a prerequisite for the integration of the real and virtual worlds in mixed-reality applications. However, real-time updating of a real environment model is a costly and difficult process; therefore, hybrid approaches have been developed: An updated world model can be inferred from an offline acquisition of the 3D world, which is then updated online using live image sequences under the condition of developing fast and robust change detection algorithms. Current algorithms are biased toward object insertion and often fail in object removal detection; in an environment where there is uniformity in the background—in color and intensity—the disappearances of foreground objects between the 3D scan of a scene and the capture of several new pictures of said scene are difficult to detect. The novelty of our approach is that we circumvent this issue by focusing on areas of least change in parts of the scene that should be occluded by the foreground. Through experimentation on realistic datasets, we show that this approach results in better detection and localization of removed objects. This technique can be paired with an insertion detection algorithm to provide a complete change detection framework
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|