Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates

Résumé

We study the problem of zeroth-order (black-box) optimization of a Lipschitz function $f$ defined on a compact subset $\mathcal X$ of $\mathbb R^d$, with the additional constraint that algorithms must certify the accuracy of their recommendations. We characterize the optimal number of evaluations of any Lipschitz function $f$ to find and certify an approximate maximizer of $f$ at accuracy $\varepsilon$. Under a weak assumption on $\mathcal X$, this optimal sample complexity is shown to be nearly proportional to the integral $\int_{\mathcal X} \mathrm{d}\boldsymbol x/( \max(f) - f(\boldsymbol x) + \varepsilon )^d$. This result, which was only (and partially) known in dimension $d=1$, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on a slightly improved analysis of the DOO algorithm that we adapt to the certified setting and then link to the above integral. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting and relies on a local worst-case analysis that could likely prove useful for other learning tasks.
Fichier principal
Vignette du fichier
main.pdf (356.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03129721 , version 1 (03-02-2021)
hal-03129721 , version 2 (09-03-2021)
hal-03129721 , version 3 (09-06-2021)
hal-03129721 , version 4 (21-03-2023)

Identifiants

Citer

François Bachoc, Tommaso R Cesari, Sébastien Gerchinovitz. Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates. 2021. ⟨hal-03129721v3⟩
377 Consultations
338 Téléchargements

Altmetric

Partager

More