Weil polynomials of abelian varieties over finite fields with many rational points - Archive ouverte HAL
Article Dans Une Revue International Journal of Number Theory Année : 2022

Weil polynomials of abelian varieties over finite fields with many rational points

Résumé

We consider the finite set of isogeny classes of $g$-dimensional abelian varieties defined over the finite field $\mathbb{F}_q$ with endomorphism algebra being a field. We prove that the class within this set whose varieties have the maximal number of rational points is unique, for any prime even power $q$ big enough and verifying mild conditions. We describe its Weil polynomial and we prove that the class is ordinary and cyclic outside the primes dividing an integer that only depends on $g$. In dimension 3, we prove that the class is ordinary and cyclic and give explicitly its Weil polynomial, for any prime even power $q$.
Fichier principal
Vignette du fichier
2101.12664.pdf (194.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03126811 , version 1 (07-07-2022)

Identifiants

Citer

Elena Berardini, Alejandro Giangreco-Maidana. Weil polynomials of abelian varieties over finite fields with many rational points. International Journal of Number Theory, 2022, 18 (07), pp.1591-1603. ⟨10.1142/S1793042122500804⟩. ⟨hal-03126811⟩
100 Consultations
115 Téléchargements

Altmetric

Partager

More