Sessile volatile drop evaporation under microgravity - Archive ouverte HAL
Article Dans Une Revue NPJ Microgravity Année : 2020

Sessile volatile drop evaporation under microgravity

Résumé

The evaporation of sessile drops of various volatile and non-volatile liquids and their internal flow patterns with or without instabilities have been the subject of many investigations. The current experiment is a preparatory one for a space experiment planned to be installed in the European Drawer Rack 2 (EDR-2) of the International Space Station (ISS) to investigate drop evaporation in weightlessness. In this work, we concentrate on preliminary experimental results for the evaporation of hydrofluoroether (HFE-7100) sessile drops in a sounding rocket that has been performed in the frame of the MASER-14 Sounding Rocket Campaign, providing the science team with the opportunity to test the module and perform the experiment in microgravity for 6 consecutive minutes. The focus is on the evaporation rate, experimentally observed thermo-capillary instabilities, and the de-pinning process. The experimental results provide evidence for the relationship between thermo-capillary instabilities and the measured critical height of the sessile drop interface. There is also evidence of the effects of microgravity and Earth conditions on the sessile drop evaporation rate and of the shape of the sessile drop interface and its influence on the de-pinning process.
Fichier principal
Vignette du fichier
Marked_up_version.pdf (6.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03117801 , version 1 (21-01-2021)

Identifiants

Citer

Sanjeev Kumar, Marc Medale, Paolo Di Marco, David Brutin. Sessile volatile drop evaporation under microgravity. NPJ Microgravity, 2020, 6, pp.37. ⟨10.1038/s41526-020-00128-2⟩. ⟨hal-03117801⟩
51 Consultations
34 Téléchargements

Altmetric

Partager

More