Detecting fake news in tweets from text and propagation graph: IRISA's participation to the FakeNews task at MediaEval 2020 - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Detecting fake news in tweets from text and propagation graph: IRISA's participation to the FakeNews task at MediaEval 2020

Résumé

This paper presents the participation of IRISA to the task of fake news detection from tweets, relying either on the text or on propagation information. For the text based detection, variants of BERT-based classification are proposed. In order to improve this standard approach, we investigate the interest of augmenting the dataset by creating tweets with fine-tuned generative models. For the graph based detection, we have proposed models characterizing the propagation of the news or the users' reputation.
Fichier principal
Vignette du fichier
Claveau-me20.pdf (387.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03116027 , version 1 (20-01-2021)

Identifiants

  • HAL Id : hal-03116027 , version 1

Citer

Vincent Claveau. Detecting fake news in tweets from text and propagation graph: IRISA's participation to the FakeNews task at MediaEval 2020. MediaEval 2020 - MediaEval Benchmarking Initiative for Multimedia Evaluation, Dec 2020, online, United States. pp.1-3. ⟨hal-03116027⟩
258 Consultations
309 Téléchargements

Partager

More