Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2021

Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains

Daniel Han-Kwan
Ayman Moussa

Résumé

We study the large time behavior of small data solutions to the Vlasov-Navier-Stokes system set on $\Omega \times \R^3$, for a smooth bounded domain $\Omega$ of $\R^3$, with homogeneous Dirichlet boundary condition for the fluid and absorption boundary condition for the kinetic phase. We prove that the fluid velocity homogenizes to $0$ while the distribution function concentrates towards a Dirac mass in velocity centered at $0$, with an exponential rate. The proof, which follows the methods introduced in \cite{HKMM}, requires a careful analysis of the boundary effects. We also exhibit examples of classes of initial data leading to a variety of asymptotic behaviors for the kinetic density, from total absorption to no absorption at all.
Fichier principal
Vignette du fichier
VNSdomainLTB-EHKM.pdf (488.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03111709 , version 1 (15-01-2021)

Licence

Identifiants

Citer

Lucas Ertzbischoff, Daniel Han-Kwan, Ayman Moussa. Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains. Nonlinearity, 2021, 34 (10), pp.6843. ⟨10.1088/1361-6544/ac1558⟩. ⟨hal-03111709⟩
113 Consultations
65 Téléchargements

Altmetric

Partager

More