Efficient computation of Riemann-Roch spaces for plane curves with ordinary singularities - Archive ouverte HAL
Article Dans Une Revue Applicable Algebra in Engineering, Communication and Computing Année : 2022

Efficient computation of Riemann-Roch spaces for plane curves with ordinary singularities

Résumé

We revisit the seminal Brill-Noether algorithm for plane curves with ordinary singularities. Our new approach takes advantage of fast algorithms for polynomials and structured matrices. We design a new probabilistic algorithm of type Las Vegas that computes a Riemann-Roch space in expected sub-quadratic time.
Fichier principal
Vignette du fichier
rrordinary.pdf (596 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03110135 , version 1 (14-01-2021)

Licence

Identifiants

Citer

Simon Abelard, Alain Couvreur, Grégoire Lecerf. Efficient computation of Riemann-Roch spaces for plane curves with ordinary singularities. Applicable Algebra in Engineering, Communication and Computing, 2022, ⟨10.1007/s00200-022-00588-x⟩. ⟨hal-03110135⟩
279 Consultations
636 Téléchargements

Altmetric

Partager

More