Texture analysis of lace images using histogram and local binary patterns under rotation variation
Résumé
The images of lace textile are particularly difficult to be analyzed in digital form using classical image processing techniques. The major reasons of this difficulty emerge from the complex nature of lace which generally has different textures in its constituents like the background and patterns. In this paper, we study the behavior of Image Histogram (HistI) and Local Binary Patterns (LBP) on image extracts of lace in presence and absence of rotation. We further evaluate two variants of LBP; primarily the LBP Histogram (LBPB) and secondly the Fourier Transform applied on the LBP Histogram (LBPFFT). Consequently, we analyze the contribution of data fusion on feature level and score level in the different experimentations. The classification rate evaluates the discrimination degree of each descriptor via the k nearest neighbors kNN classifier. Experimental results indicate that the LBPB, LBPFFT and HistI combined at score level generate the better performance in absence of transformations. Whereas, LBPFFT and HistI combined at the same level generate the better classification rate, in the presence of rotation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|