Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2016

Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process

Résumé

The effect of deuteration of acetylacetone (C 5 O 2 H 8) is explored by means of IR spectroscopy of its single and double deuterated isotopologues trapped in neon matrices. The whole vibrational spectra of chelated enols are very sensitive to the H-D exchange of the hydrogen atom involved in the internal hydrogen bond. UV excitation of double deuterated acetylacetone isolated in neon matrices induces the formation of four open enol isomers which can be divided into two groups of two conformers, depending on their formation kinetics. Within each group, one conformer is more stable than the other: slow conformer interconversion due to a tunneling process is observed in the dark at low temperature. Moreover, IR laser irradiation at the OD stretching overtone frequency is used to induce interconversion either from the most stable to the less stable conformer or the opposite, depending on the excitation wavelength. The interconversion process is of great help to assign conformers which are definitively identified by comparison between experimental and calculated IR spectra. Kinetic constants of the tunneling process at play are theoretically estimated and agree perfectly with experiments, including previous experiments with the totally hydrogenated acetylacetone [Lozada García et al., Phys. Chem.
Fichier principal
Vignette du fichier
AcAcD2Nerev_Just-Accepted (1).pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03097287 , version 1 (01-02-2021)

Identifiants

Citer

Alejandro Gutiérrez Quintanilla, Michèle Chevalier, Claudine Crépin. Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process. Physical Chemistry Chemical Physics, 2016, 18 (30), pp.20713 - 20725. ⟨10.1039/c6cp02796b⟩. ⟨hal-03097287⟩
29 Consultations
77 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More