AIDX: Adaptive Inference Scheme to Mitigate State-Drift in Memristive VMM Accelerators - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Circuits and Systems II: Express Briefs Année : 2021

AIDX: Adaptive Inference Scheme to Mitigate State-Drift in Memristive VMM Accelerators

Résumé

An adaptive inference method for crossbar (AIDX) is presented based on an optimization scheme for adjusting the duration and amplitude of input voltage pulses. AIDX minimizes the long-term effects of memristance drift on artificial neural network accuracy. The sub-threshold behavior of memristor has been modeled and verified by comparing with fabricated device data. The proposed method has been evaluated by testing on different network structures and applications, e.g., image reconstruction and classification tasks. The results showed an average of 60% improvement in convolutional neural network (CNN) performance on CIFAR10 dataset after 10000 inference operations as well as a 78.6% error reduction in image reconstruction

Domaines

Electronique
Fichier principal
Vignette du fichier
Liu_2020-IEEEsubmited_2009.00180v1.pdf (5.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03095208 , version 1 (02-05-2024)

Identifiants

Citer

Tony Liu, Amirali Amirsoleimani, F. Alibart, Serge Ecoffey, Dominique Drouin, et al.. AIDX: Adaptive Inference Scheme to Mitigate State-Drift in Memristive VMM Accelerators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (4), pp.1128 - 1132. ⟨10.1109/TCSII.2020.3026642⟩. ⟨hal-03095208⟩
95 Consultations
13 Téléchargements

Altmetric

Partager

More