Energy Packet Networks with Finite Capacity Energy Queues
Résumé
Energy Packet Network (EPN) consists of a queueing network formed by n blocks, where each of them is formed by one data queue, that handles the workload, and one energy queue, that handles packets of energy.
We study an EPN model where the energy packets start the transfer. In this model, energy packets are sent to the data queue of the same block. An energy packet routes one workload packet to the next block if the data queue is not empty, and it is lost otherwise.
We assume that the energy queues have a finite buffer size and if an energy packet arrives to the system when the buffer is full, jump-over blocking (JOB) is performed, and therefore with some probability it is sent to the data queue and it is lost otherwise.
We first provide a value of this probability such that the steady-state probability distribution of packets in the queues admits a product form solution. Moreover, in the case of a single block, we show that the number of data packets in the system decreases as the JOB probability increases.