Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Geophysical Journal International Année : 2020

Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns

Alexis Le Pichon
  • Fonction : Auteur
  • PersonId : 881916

Résumé

Between 0.1 and 0.5 Hz, infrasound signals recorded in the atmosphere are dominated by ocean-generated noise called microbaroms. Microbaroms propagate through the atmosphere over thousands of kilometers due to low absorption and efficient ducting between the ground and the stratopause. Different theoretical models have been developed to characterize the source of microbaroms, all based on the second-order non-linear interaction of ocean waves. While early theories considered an infinite ocean depth and a source radiation depending on the acoustic wave elevation angle, other works have approximated the radiation pattern as a monopole, and found a considerable effect of the water depth. This paper reviews these models and extends the previous theories to the combined effects of both finite depth ocean and source directivity in both elevation and azimuth angles. It is found that the water depth has a negligible effect for the near-horizontally propagating acoustic waves that should dominate the measured microbarom records. Another important result is that the microbarom azimuthal variation can be highly directive locally, but it generally becomes isotropic when integrated over a realistic source region.
Fichier principal
Vignette du fichier
DeCarlo_etal_GJI2020.pdf (1.53 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03094001 , version 1 (04-01-2021)

Identifiants

Citer

Marine de Carlo, Fabrice Ardhuin, Alexis Le Pichon. Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns. Geophysical Journal International, 2020, 221 (1), pp.569-585. ⟨10.1093/gji/ggaa015⟩. ⟨hal-03094001⟩
23 Consultations
106 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More