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d’Océanographie Physique et Spatiale (LOPS), IUEM, Brest, France

3 Marine Physical Laboratory, Scripps Instition of Oceanography, La Jolla, CA, USA

3

Received XX; in original form 2019 June 104

SUMMARY5

Between 0.1 and 0.5 Hz, infrasound signals recorded in the atmosphere are dominated by6

ocean-generated noise called microbaroms. Microbaroms propagate through the atmosphere7

over thousands of kilometers due to low absorption and efficient ducting between the ground8

and the stratopause. Different theoretical models have been developed to characterize the9

source of microbaroms, all based on the second-order non-linear interaction of ocean waves.10

While early theories considered an infinite ocean depth and a source radiation depending on11

the acoustic wave elevation angle, other works have approximated the radiation pattern as a12

monopole, and found a considerable effect of the water depth. This paper reviews these mod-13

els and extends the previous theories to the combined effects of both finite depth ocean and14

source directivity in both elevation and azimuth angles. It is found that the water depth has15

a negligible effect for the near-horizontally propagating acoustic waves that should dominate16

the measured microbarom records. Another important result is that the microbarom azimuthal17

variation can be highly directive locally, but it generally becomes isotropic when integrated18

over a realistic source region.19

Key words: Infrasound – Interface waves – Wave propagation20



2 De Carlo et al.

1 INTRODUCTION21

Continuous oscillations of the ground displacement and atmospheric pressure, named respectively22

secondary microseisms and microbaroms, are measured worldwide by seismological and infra-23

sound networks with a dominant frequency around 0.2 Hz (Benioff & Gutemberg, 1939). They24

are generated by second-order non linear interaction of ocean gravity waves of similar frequency25

propagating in almost opposite directions (Longuet-Higgins, 1950; Hasselmann, 1963).26

Microbarom propagate through the atmosphere over large distances due to low absorption rates27

and efficient atmospheric ducting between the ground and the stratopause (Drob, 2019; Waxler &28

Assink, 2019). Studying microbaroms recorded for four years at Palisades, New York, (Donn &29

Rind, 1971) have revealed the importance of winds in the higher atmosphere for their propaga-30

tion, pointing to the capability of ground-based measurements to probe the higher atmosphere, for31

which very few other observations are available.32

Recent developments of infrasound networks at global and continental scales facilitate the33

analysis of acoustic waves for probing unresolved atmospheric structures in the middle atmo-34

sphere (Marty, 2019; Blanc et al., 2018). This has motivated mathematical developments of geo-35

physical inverse problems using infrasound from well identified sources (Drob et al., 2010; Assink36

et al., 2014). Ducting of infrasound depends on the 3-D wind and temperature fields and is most37

efficient if the propagation direction coincides with the polar vortex at mid-latitude regions. In par-38

ticular, the main characteristics of Sudden Stratospheric Warming events have been successfully39

derived from directional microbarom amplitude variations resulting from changes in stratospheric40

and thermospheric propagation conditions (e.g. Garcés et al., 2002; Landès et al., 2010; Smets &41

Evers, 2014). Such studies demonstrate the advantage of an infrastructure that integrates indepen-42

dent middle atmospheric measurement techniques currently not assimilated in numerical weather43

prediction models (NWP) and provides quantitative understanding of stratosphere-troposphere dy-44

namical coupling useful for NWP applications (Le Pichon et al., 2015).45

So far, microbarom studies have used qualitative comparisons between source models and46

received signals, with sdifficulties of interpretation associated with uncertainties in the measure-47

ments and in the propagation. Thanks to novel measurements from a statospheric balloon fitted48
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with microbarometers, Bowman & Lees (2018) were able to verify quantitatively the predictions49

based on numerical ocean wave models and the microbarom source theory of Waxler et al. (2007)50

using measured sound spectra over the Southern Ocean. Their further interpretation of micro-51

baroms as a major heat source for the thermosphere, well above their measurement altitude, relies52

on the monopolar radiation pattern predicted by Waxler & Gilbert (2006).53

Following the work of Longuet-Higgins (1950) on microseisms, a first theory of microbarom54

generation was proposed by Posmentier (1967), with the atmospheric motion coming from the55

continuity of the velocity field at the air-sea interface, and no feedback of the atmosphere on the56

pressure field in the ocean. A more complete theory for random waves, consistent with the mi-57

croseism generation theory of Hasselmann (1963) and an accurate treatment of the air-sea bound-58

ary condition is given by Brekhovskikh et al. (1973), leading to significant differences for near-59

horizontal propagation. However, that work only considered an ocean of infinite depth. The effect60

of the ocean depth, with the amplification of particular frequencies corresponding to an ‘organ61

pipe resonance’ of the water column, was later considered by Waxler et al. (2007), extending the62

work done by Waxler & Gilbert (2006).The major difference between that work and the earlier63

analysis of Brekhovskikh et al. (1973) is the monopole radiation pattern that, as we show here,64

comes from an assumption on the coherence of the source over only very short scales whereas65

Brekhovskikh et al. (1973) did not introduce this assumption. A unified theory is thus necessary66

for further quantitative analysis of microbarom records and the analysis of their impact in regions67

where no measurement is available, such as the thermosphere.68

Given that microbaroms and microseisms are related (Donn & Naini, 1973) it is interesting to69

discuss microseisms for which more quantitative analyses are available. Microseisms have their70

most energetic sources assocated to severe ocean storms but not necessarily co-located with the71

storm due to the propagation of ocean waves as swells (Obrebski et al., 2012). In particular, mea-72

surements at seismic stations near coasts can be dominated by the interaction of storm waves with73

their reflection from the coast (Bromirski et al., 1999; Ardhuin et al., 2011). In general, the sources74

at a frequency fs correspond to the interaction of waves with similar frequencies f = fs/2 and75

nearly opposite directions, as illustrated in Fig. 1.76
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Figure 1. Example of vertical cross-section of the pressure pattern, in colors, radiated by a pair of interacting

ocean wave trains of period around 10 s. The sea surface elevation, plotted as a blue line around z = 0 is

the sum of the elevations of the two wave trains and has a wave group structure. (A) The periods of the two

wave trains are 10 s and 9.66 s (B) 10 s and 9.94 s. Note that the vertical displacement of the sea surface is

strongly exaggerated in order to make waves visible. A realistic ocean wave field includes many wave trains

and thus all possible pairs of interactions radiating acoustic waves in all directions θa. As the two periods

of the wave train get closer, from (A) to (B), the lengths of the groups get larger and the angle θa becomes

smaller. This paper focuses on the radiated power as a function of θa.

The generation of acoustic and seismic modes in the ocean and solid Earth with horizontal77

propagation speeds that exceed 1500 m/s, much more than the typical ocean waves phase speeds78

around 15 m/s, was explained quantitatively by Hasselmann (1963) as the result of an interference79

of pairs of ocean wave trains of wavenumbers k and k′, giving seismic or acoustic waves at the80

wavenumber K = k+k′. The microseism generation theory is one particular example of the gen-81

eral theory of wave-wave interactions developed by Hasselmann (1966). The horizontal radiation82

pattern of a single pair of ocean waves gives a single sinusoidal pressure field propagating in the83

direction ϕ2 of the wavenumber vector K. For microseisms K = |K| is generally much smaller84

than the width of the ocean wave spectrum, so that the combination of all pairs of ocean waves85

gives an isotropic source.86

In the case of microbaroms of frequency 0.2 Hz, the sound speed in the air is only 20 times the87

phase speed of the ocean waves, so that K is comparable to the ocean wave spectrum width, and88

there may be a preferential radiation in some directions ϕ2. Applications and further analysis of89

microbaroms require a knowledge of the source magnitude and variability. In recent work, Waxler90

et al. (2007) investigated the influence of the water depth on the source magnitude, similar to what91
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Figure 2. Example of horizontal pressure patterns, in colors, radiated by a pair of interacting ocean wave

trains of periods 10 s and 9.66 s with (A) opposing directions (B) not exactly opposing directions. For acous-

tic waves, the maximum magnitude K of the wavenumber vector K corresponds to horizontal propagation

with K = Ω/αa and can be in any azimuth ϕ2 depending on the exact ocean wave wavenumbers k and k′.

Modes with larger values of K decay exponentially over the vertical and are not relevant for microbaroms

measured on land.

is found for microseisms. The conclusion of the present paper is that the effect of water depth92

depends on the angle θa of the sound propagation relative to the vertical direction, and that the93

pressure field of microbaroms over the ocean generally contains a wide range of angles. Indeed, the94

coupling of the ocean and atmosphere strongly depends on θa, as demonstrated by Brekhovskikh95

et al. (1973), but neglected by Waxler & Gilbert (2006).96

This importance of θa is now well known for microseisms and is easy to understand in relation97

to the physical properties of the solid Earth, ocean, and atmosphere. A usual approximation of the98

propagating medium is a stack of uniform horizontal layers l characterized by different veloci-99

ties of propagation αl and βl for compression and shear waves. Close to the source, microseisms100

are dominated by Rayleigh waves that correspond to relatively slow components, with horizontal101

propagation speeds between the sound speed in water αw, and the shear wave speed in the crust βc.102

These Rayleigh modes combine motions that decay exponentially with depth in the solid Earth,103

with propagating acoustic waves in the ocean, and their acoustic propagation angles in the water104

θw are larger than arcsin(αw/βc) ≃ 30◦ (Ardhuin et al., 2019). For very large distances, seismic105

body waves may dominate the signal because of their weaker attenuation with distance, and these106

are due to the ocean acoustic noise that is more nearly vertical, allowing propagation in the crust,107
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with θw < arcsin(αw/αc) ≃ 16◦. The water depth effect is clearly different for Rayleigh and body108

waves, as predicted by Ardhuin & Herbers (2013) and Gualtieri et al. (2014), and demonstrated109

by (Obrebski et al., 2013) and Meschede et al. (2017).110

Now looking at microbaroms, we expect similar dependencies on θa because different com-111

ponents of the ocean wave forcing field, with wavenumbers K = k+ k′ give acoustic modes that112

have different apparent horizontal speeds C = 2πfs/|K|. Speed faster than the compression speed113

in the crust C > αc leads to the generation of compression P-waves in the solid Earth, correspond-114

ing to nearly vertical propagation in the ocean layer and even more vertical propagation in the115

atmosphere, given by Snell’s law. The limit C → ∞ corresponding to vertical propagation and116

|K| = 0, which are the exactly standing waves of Longuet-Higgins. At the other extreme, C < αw117

gives evanescent waves in the water layer that correspond to acoustic-gravity (AG) modes that118

dominate the pressure field measured in the top 300 m of the ocean, as observed by Cox & Jacobs119

(1989) and Ardhuin et al. (2013). For these AG modes, we expect no influence of water depths120

larger than 300 m on the pressure at the ocean surface. These AG waves are coupled to atmospheric121

acoustic waves that have propagation angles larger than θa0 = arcsinαa/αw ≃ 12◦.122

The difference in water depth effects between body waves, Rayleigh waves and AG modes123

should influence the amplitude of acoustic waves radiated in the atmosphere, and the amplitude of124

microbaroms should strongly depend on the direction of propagation θa relative to the vertical. The125

decomposition of the ocean wave forcing in different horizontal wavenumbers K = K (cosϕ2, sinϕ2)126

allows to consider separately the different acoustic wave components and how they may contribute127

to different acoustic modes. EachK corresponds to a propagation angle such that sin θl = K αl/(2πfs)128

where αl is the sound speed in the layer l, which is related to Snell’s law.129

Because the ocean wave spectra are relatively broad, they contain a wide range of pairs k130

and k′ so that all possible K are excited simultaneously. For microseisms, this produces a spec-131

trum of the excitation that is white in wavenumber, and thus equivalent to a point force. In the132

case of microbaroms, the conversion from wave motion to acoustic pressure is a function of the133

wavenumber K, first given by Brekhovskikh et al. (1973), which determines the radiation pattern134

in the atmosphere.135
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Hence the previous works either lack the possible important effect of finite depth in the ocean,136

or important aspects of the radiation pattern in the atmosphere. In order to progress towards a137

quantitative understanding of microbarom signals it is thus necessary to have both effects in the138

same theory, and this is the objective of the present paper. For the sake of simplicity, we only139

consider the case of a homogeneous atmosphere, and extend the theory of Brekhovskikh et al.140

(1973) to take into account a finite water depth. The theoretical formulation and the main results141

are given in section 2, with details of the derivation in the Supporting Information. These results142

are interpreted in section 3 and conclusions follow in section 4.143

2 A GENERAL THEORY OF MICROBAROM SOURCES144

In order to facilitate the translation between the different papers we have listed in table 1 the cor-145

respondence of the main symbols used. We have also included Longuet-Higgins (1950) because it146

treats almost the same physical problem, with a focus on the water layer, and the same decompo-147

sition in particular and homogeneous solutions of the forced wave equation.148

As detailed in the Supporting information, which follows the method of Brekhovskikh et al.149

(1973), the basis of microseism and microbaroms generation theory is the coupling of motions in150

different layers, with a forcing coming from nonlinear ocean wave effects, in which the nonlin-151

earity is necessary to allow the generation of waves with long wavelenghts 2π/|k + k′| from the152

interference of shorter ocean waves with wavelengths 2π/|k| and 2π/|k|′. The velocity potential153

φ in layer l is solution of a wave equation (Brekhovskikh et al., 1973),154

∂2φ

∂t2
− α2

l∇2φ = − ∂

∂t
(∇φ)2 − g

∂φ

∂z
, (1)155

where ∇2 is the 3-dimensional Laplace operator. The two terms on the right hand side can be156

neglected in the water layer (Longuet-Higgins, 1950), but are generally significant in the air. The157

first term corresponds to the effect of compressibility. It adds one particular solution φp that is158

zero away from the boundary but modifies the homogeneous solution via the boundary condition159

at the air-sea interface. The second term is the effect of gravity, which gives a weak additional160

exp(gz/2α2
l ) vertical decay, with a half-decay distance of 15 km in the atmosphere and 300 km161
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Table 1. Notations used in different papers: LH50 stands for Longuet-Higgins (1950), BGKN73 stands for

Brekhovskikh et al. (1973), WG06 stands for Waxler & Gilbert (2006) and AH13 stands for Ardhuin &

Herbers (2013).

quantity this paper LH50 BGKN73 WG06 AH13

vertical coordinate z −z z z z

angle relative to vertical θa or θw − θ1 or θ2 − −
surface elevation ζ ζ ζ ξ ζ

azimuth of spectrum ϕ θ ϕ θ θ

azimuth of acoustic signal ϕ2 − ϕa − −
velocity potential φ −φ −ϕ φ φ

layer index l − j σ −
sound speed αl c cj cσ α

density ratio m − m − −
horizontal wavenumber K − q − K

radian frequency Ω − Ω − 2πfs

horizontal wavenumbers k, k′ (−uk,−vk) κ, κ1 k, q k, k′

radian frequencies σ, σ′ σ ω(κ),ω(κ1) ω(k),ω(q) σ, σ′

pressure p p ρP p p

vertical wavenumbers ν , µ − , α λ1,λ2 − la, l

upward amplification g/2αl γ − − −

in the ocean. That second effect was considered by Brekhovskikh et al. (1973) but neglected in162

Waxler & Gilbert (2006).163

Neglecting these two terms for the water layer, solutions that are periodic in time and space164

take the following homogeneous form, with Ω = 2πfs the radian frequency and κa = ν+ and165

κw = µ− the vertical wave-numbers (going upwards in the air and downwards in the water)166

φ =
∑

k

Φl exp [i (K · x+ κlz − Ωt)] + c.c.167

=
∑

k,s

Φl exp [i (K · x+ κlz − sΩt)] , (2)168

where c.c. stands for the complex conjugate and s = 1 or s = −1 is a sign index. Neglecting the169

right hand side of (1), one gets170

κ2l +K2 = Ω2/α2
l . (3)171
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With N the number of unknown potential amplitudes (Φi)1≤i≤N , there are N continuity condi-172

tions for stresses and displacements at the layer interfaces, linking the N amplitudes of velocity173

potentials.174

All the variables, the pressure p, the density ρ, the velocity potential φ and the sea surface ele-175

vation ζ are expanded in powers of ε = ak that is the product of a typical ocean wave wavenumber176

k and surface elevation amplitude a,177

p = p0 + p1 + p2 + ... (4)178

179

ρ = ρ0 + ρ1 + ρ2 + ... (5)180

181

φ = φ0 + φ1 + φ2 + ... (6)182

183

ζ = ζ0 + ζ1 + ζ2 + ... (7)184

In addition to the wave slope ε, two other small parameters are defined, the ratio between the185

air and water densities m = ρa/ρw and δl = σ/kαl the ratio between the speed of surface waves186

and the speed of sound in the air or water.187

Collecting the terms of same order, we obtain at each order a system of N equations for N188

unknowns with a detailed derivation in Supporting Information. At order ε0, the solution is the189

hydrostatic equilibrium of pressure and gravity. The first order solution corresponds to Airy waves,190

which are linear gravity waves, with negligibleO(δ2w) andO(m) corrections due to the presence of191

air and the compressibility of air and water, as given by Brekhovskikh et al. (1973, eqs. 11 and 12.192

See also Supporting information). Namely the surface elevation is given by Hasselmann (1962),193

ζ1(x, t) =
∑

k,s

Zs
1,k exp [i (k · x− sσt)] , (8)194

where Zs
1,k is the amplitude of the first order sea surface elevation for wavenumber k and propa-195

gation direction s and s = ±1 is a sign index that gives the direction of propagation relative the196

direction of the wave vector k. The velocity potential in the water is given by,197

φw(x, z, t) =
∑

k,s

Φs
1,k

cosh(kz + kh)

cosh(kh)
exp [i (k · x− sσt)] (9)198
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with199

Φs
1,k =

g

iσ
Zs

1,k. (10)200

In the air, the effects of gravity and compressibility (i.e. the right hand side terms in eq. 1), are less201

negligible, and we have,202

φa(x, z, t) =
∑

k,s

k

ka
Φs

1,k exp [−kaz + i (k · x− sσt)] (11)203

with eq. 12 in Brekhovskikh et al. (1973),204

ka = k
(√

1− δ2a + δ4a/2− δ2a/2
)
≃ k

(
1− δ2a

)
(12)205

where δa =
√
g/k/αa. We note that half of this correction to ka comes from the δ2a/2 that is due206

to gravity, and the other half comes from the air compressibility.207

Finally, in the ε2 system, the wave spectrum acts as a forcing, coming through either the par-208

ticular solutions that satisfy the wave equation with the right hand side, or from the boundary209

conditions between the different layers. In other words the wave forcing Λ = (Λi)1≤i≤N is a210

vector on the right hand side of a matrix equation211

MΦ = Λ. (13)212

The only differences between all the theories discussed here are in the approximations of the213

boundary conditions between ocean and atmosphere and ocean and solid Earth. Mathematically,214

different terms are neglected in the coefficients of the matrix M or in the forcing vector Λ, as215

detailed below.216

Further extensions to multiple layers in the atmosphere and solid Earth give rise to different217

horizontally propagating modes, which correspond to zeros of the determinant of M, for which a218

growth rate of the energy can be computed as done for seismic Rayleigh waves by Hasselmann219

(1963). The size of the matrix M grows by two lines and columns for each extra fluid layer, for220

which the two unknowns are one upward and one downward propagating potential amplitudes. For221

a solid layer there are four unknowns due to the presence of both compression and shear motions222

(see Hasselmann, 1963, eq. 1.4). The important difference with Hasselmann (1963) is that Λi was223

non-zero only for the sea surface pressure continuity equation in Hasselmann’s case, whereas in224
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our case we will consider forcing in both the pressure and velocity equations. We also note that225

for finite water depth there is also a forcing term in the boundary condition for the ocean bottom226

pressure coming into Λ3 (Ardhuin & Herbers, 2013).227

2.1 Existing solutions228

2.1.1 Case of infinite water depth - Brekhovskikh et al. (1973)229

Brekhovskikh et al. (1973) considered only two layers, air and water, that are half spaces. As230

a result, for each frequency Ω and wavenumber vector K, there are only two unknowns, one231

amplitude A for the velocity potential of upgoing acoustic waves in the atmosphere, and one232

amplitudeW for downgoing acoustic waves or evanescent modes in the ocean. The approximation233

m = ρa/ρw ≪ 1 removes the feedback of the atmospheric pressure on the air pressure, so that the234

atmosphere is only driven by the continuity of vertical velocities at the interface.235

The coupling of air and water layers at z = 0 by the continuity of pressure and velocity gives236

a 2 by 2 matrix M, with one line for the continuity of vertical velocity w = ∂φ/∂z and the other237

for the continuity of pressure p ,238

M1,1A+M1,2W = Λ1 (14)239

M2,1A+M2,2W = Λ2 (15)240

Following Brekhovskikh et al. (1973), we introduce the small parameters241

δ2a = g/(kα2
a) (16)242

m = ρa/ρw (17)243

n = αa/αw (18)244

and we note that |K/k| < 2δa. We now keep only the lowest order terms in δa and m, giving the245
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following matrix coefficients and right hand side (see Supporting information for details),246

M1,1 = ν+ = i
Ω

αa

cos θa +
k

2
δ2a (19)247

M1,2 = −µ− = 2kδal −
δ2a
2
kn2 (20)248

M2,1 = −mΩ2 − gi
Ω

αa

cos θa (21)249

M2,2 = Ω2 (22)250

Λ1 = isΩkδ2a

(
2− 2 sin2 θa(1−

1

2
cos2(ϕ2 − ϕ)) + n2

)
251

(23)252

Λ2 =
isΩ

ρw
pssurf(K,Ω) + o(δ2a) (24)253

where we have defined254

l = (sin2 θa − n2)1/2 = n cos θw if θa < θa0. (25)255

Following Hasselmann (1963), we define the amplitude of the equivalent surface pressure in-256

duced at second order by the wave motion. Assuming that kh≫ 1 we take the following definition,257

pssurf(K,Ω) = −2ρw
∑

k+k′=K,σ+σ′=Ω

σσ′Zs
1,kZ

s
1,k′ . (26)258

In the following we will write pssurf instead of pssurf(K,Ω).259

The solution of the matrix equations eq. (14)–(15) is given by Cramer’s rule,260

A =
Λ1M2,2 − Λ2M1,2

det(M)
, and W =

Λ2M1,1 − Λ1M2,1

det(M)
. (27)261

Following details in Supporting material section S4.1, We find the amplitudes of the velocity262

potentials at the air-sea interface to be, for the water and air respectively,263

W ≃ i

ρw

1

2σ′
pssurf (28)264

A ≃ Ra

ρw

1

2σ′
pssurf (29)265

with266

Ra =
l − 2δa

[
1− sin2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)
+ 5

8
n2
]

cos θa (1− δal/2)− i (δa/4 +ml)
. (30)267

This form of Ra is identical to Brekhovskikh et al. (1973, eq. 22), except for the addition268

of one extra term cos θalδa/2 in the denominator, and a change in the sign of the denominator269



Atmospheric infrasound radiation from ocean waves in finite depth 13

term ml. As shown in Fig. 3, these two terms have a negligible impact on the solution, except for270

θa > 89.5◦, with less than 1% change in the total radiated acoustic power.271
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Figure 3. Patterns of acoustic pressure variance as a function of the elevation angle θa for an ocean wave

period of 10 s, given by the different theories without ocean bottom, in cartesian (A), and polar (B) rep-

resentation. Note that when the radiated power is considered, these patterns must be multiplied by sin θa

before integration over θa, as given by eq. (52). In general, as given by eq. (30) the radiated power is also

a function of the relative azimuth of the first ocean wave train ϕ and the azimuth of the radiated acoustic

power ϕ2.

2.1.2 A simplified case - Ardhuin & Herbers (2013)272

The solution given by Ardhuin et al. (2013) corresponds to the simplified solution given by eq.273

(21) in Brekhovskikh et al. (1973), with m and δa terms neglected, corresponding to an absence of274

feedback from the atmospheric pressure on the oceanic pressure, i.e. M1,1 = 0, and neglecting the275

right hand side of the acoustic wave equation in the air, i.e. Λ1 = 0, giving276

Ra =
l

cos θa
=

i(n2 − sin2 θa)
1/2

cos θa
(31)277

where we recall that l is imaginary for θa < θa0.278

This simplified solution corresponds to infinite water depth. It presents a singularity for hori-279
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zontal acoustic propagation as cos θa goes to zero. That singularity is removed when the feedback280

of the air on the water motion is taken into account.281

2.1.3 Theory by Waxler and Gilbert (2006)282

Following Brekhovskikh et al. (1973), Waxler & Gilbert (2006) showed that microbarom signals283

are due both to ocean radiation and to compression of the air by the surface motion, but Waxler &284

Gilbert (2006) neglected the effect of gravity in the air. As detailed in the Supporting information,285

accounting for gravity in the air changes their term 3δ2a/2 in their eq. (57) to 2δa in eq. (32). we286

also note a change of sign from -2 to 1.5,287

RWG06
a = in+ 1.5δa. (32)288

The particularity of the derivation by Waxler & Gilbert (2006) is the fact that they neglect289

the phase shift in the Green’s function within the source region. They justified that approxima-290

tion by assuming that the coherence length scale in the acoustic source is small compared to the291

acoustic wavelength. Here we do not use such an approximation, as detailed in the Appendix A,292

as the correlation function of the source is given by the pressure spectrum pssurf(K,Ω) (our eq. 26)293

that overlaps with the acoustic wavelengths. The assumption in Waxler & Gilbert (2006) comes294

between their equations (50) and (51) and simplifies the expression of the radiation pattern in295

the atmosphere to a monopolar radiation pattern. It also reduces all expressions to their values296

for K = 0, corresponding to strictly opposing wave trains, so that the evanescent ocean motions297

that correspond to θa > θa0 are not properly represented. Without this assumption, (Brekhovskikh298

et al., 1973) found that the radiation pattern is very different from a monopole, with an overwhelm-299

ing radiation at very grazing angles, as illustrated in Fig. 1.A.300

2.2 Generalization of Brekhovskikh et al. (1973) to a finite ocean depth301

The first discussion of water depth effects on microbarom sources is due to Waxler et al. (2007).302

That work extended the analysis by Waxler & Gilbert (2006), limiting the water depth to h and303
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including an interface with a solid half space below. The velocity potential in the water is now304

φw,2 =
∑

(W+e
µ+z +W−e

µ−z) eiΘ. (33)305

with the complex wavenumber µ± = g/(2αw)±
√
K2 − Ω2/α2

w ≃ ±µ = ±
√
K2 − Ω2/α2

w.306

Taking an acoustic reflection coefficient r = ρwαw/(ρsαs), Waxler et al. (2007) found the307

reflection condition for the down-going acoustic waves, with potential φ−
w at the ocean bottom308

W+ =
1 + r

1− r
e2µhW−. (34)309

This gives,310

RW07
a ≃ in

r cos(Ωh/αw) + i sin(Ωh/αw)

cos(Ωh/αw) + ir sin(Ωh/αw)
+ 1.5δa. (35)311

In order to properly consider the effect of the propagation angles, we can go back to the deriva-312

tion of Brekhovskikh et al. (1973), now including an upgoing acoustic wave in the water layer. For313

oblique incidence we have to consider the contribution of compression waves and shear waves in314

the crust with velocities αs and β. Defining the vertical wavenumbers in the the crust315

χp =

√
K2 − Ω2

α2
s

, and χs =

√
K2 − Ω2

β2
. (36)316

The reflection at the bottom generalizes to317

r ≃ Ω4ρwχp

ρsµ
[
(Ω2 − 2K2β2)2 − 4β4K2χpχs

] . (37)318

This is obtained by eliminating the potentials of the compression and shear motions in the crust,319

using the continuity of velocity and a zero tangential stress (see also Ardhuin & Herbers, 2013;320

Gualtieri et al., 2014).321

When only the dominant terms are kept we find,322

Ra =
l

cos θa

R

Q
(38)323

with324

R = sinh(µh) + r cosh(µh), (39)325

Q = cosh(µh) + r sinh(µh). (40)326
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In the case θa = 0, eq. (38) corresponds to the first term of eq. (35).327

When going to first order in δa and m, the problem can be simplified by neglecting the effect328

of gravity in the water layer, which contributed to the n2 term in the numerator of eq. (30). This329

gives −µ− = µ+ = µ. It is then more simple to eliminate the amplitude W− by using the bottom330

boundary condition on the vertical velocity. This amounts to replacing −µ− by −2µRe−µh/(1 + r)331

in M1,2 and Ω2 by 2QΩ2e−µh/(1 + r) in M2,2, giving,332

Figure 4. Radiation patterns of 10log10|Ra| according to eq. (41) for (A) fs = 0.2 Hz , (B) fs = 0.5 Hz

with fs = Ω/2π - polar representation against the angle θa and the depth h.

Ra =
lR− 2δaQ

[
1− sin2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)]

cos θa (Q+Rδal/2)− i (Qδa/4 +Rml)
(41)333

Table 2. Summary of differences between models, with Ra defined on eq. (29)

Model depends on θa depth compressible gravity Ra

BGKN73 X ∞ X X eq. (30)

AH13 X ∞ × × eq. (31)

WG06 × ∞ X × eq. (32)

W07 × any X × eq. (35)

this paper X any X X eq. (41)

334
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Figure 5. Magnitude of the velocity potential amplification from the water to the air, Ra, as a function of

the ratio of the water depth and acoustic wavelength, in the case of vertical propagation, i. e. θa = 0. For

fs = 0.2 Hz, the two peaks corresponds to depths of 1900 and 5600 m. Here we have used αs = 5540 m/s,

β = αs/
√
3, ρs = 2500km/m3.

2.3 Radiated acoustic power as a function of elevation and azimuth335

We introduce the spectral density of the homogeneous (propagating) pressure field at z = 0, in336

the three spectral dimensions (Kx, Ky, fs) using the Fourier amplitude of pa,2 at z = 0, obtained337

from the average over realizations of the sea state, represented by angular brackets, of the pressure338

amplitude squared,339

Fp,2h(K, fs) = 2 lim
∆Kx→0,∆Ky→0,dfs→0

〈∣∣P+
2,h

∣∣2 (K, fs)
〉

∆Kx∆Kx∆fs
(42)340

Given the dispersion relation of ocean surface gravity waves in deep water, the Jacobian of the341

transformation from (kx, ky) to (f, ϕ) is 2πk/(∂σ/∂k) = 4πσ3/g2.342

We now define the ocean wave spectrum as343

E(f, ϕ) =
4πσ3

g2
E(kx, ky) = 2 lim

∆kx→0,∆ky→0

|Z+
k |2

∆Kx∆Ky

4πσ3

g2
344

= 2 lim
∆f→0,∆ϕ→0

|Z+
k |2

∆f∆ϕ
. (43)345

We use eq. (26) and replace the amplitude P+
2,h by i(σ + σ′)ρaA, namely,346

P+
2,h =

iρa(σ + σ′)

ρw2σ′
Rap

+
surf . (44)347
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This gives,348

2
∣∣P+

2,h

∣∣2 = 2ρ2a |Ra|2 σ2(σ + σ′)2

∣∣∣∣∣
∑

k+k′=K,σ+σ′=Ω

Z1,kZ1,k′

∣∣∣∣∣

2

(45)349

= σ2(σ + σ′)2ρ2a |Ra|2
∑

k+k′=K,σ+σ′=Ω

2
∣∣Z+

1,k

∣∣2 2
∣∣Z+

1,k′

∣∣2 , (46)350

where the last equality is obtained by considering that each pair of wavenumbers (k1,k2) is351

counted twice, a first time when k = k1 and k′ = k2 and a second time when k = k2 and k′ = k1.352

This is well understood when considering the simplest form with the ocean wave field consisting353

of only two cosine waves (See Supporting information, eqs. S124–S128).354

Taking the limit to continuous sums and using a change of variable from (kx, ky, k
′
x, k

′
y) to355

(fs, ϕ,Kx, Ky), with Kx = kx + k′x, Ky = ky + k′y and fs = (
√
gk +

√
gk′)/(2π) the Jacobian of356

the coordinate transform is357

det

(
∂fs∂ϕ∂Kx∂Ky

∂kx∂ky∂k′x∂k
′
y

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

g cosϕ/(4πσ) − sinϕ/k 1 0

g sinϕ/(4πσ) cosϕ/k 0 1

g cosϕ′/(4πσ′) 0 1 0

g sinϕ′/(4πσ′) 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

358

=
g2

4πσ3σ′
[σ′ − σ cos (ϕ− ϕ′)] , (47)359

and gives360

∫
Fp,2h(K, fs)dKxdKydfs = ρ2a

∫
σ2(σ + σ′)2 |Ra|2E(kx, ky)E(kx, ky)dkxdkydk′xdk′y361

= ρ2a

∫
σ2(σ + σ′)2 |Ra|2

E(kx, ky)E(k
′
x, k

′
y)4πσ

3σ′

g2 [σ′ − σ cos (ϕ− ϕ′)]
dfsdϕdKxdKy.362

Now we use the unicity of the Fourier transform to identify the spectral density in the left and right363

hand sides, and using eq. (43) gives364

Fp,2h(K, fs) =
1

2
ρ2ag

2fs

∫ 2π

0

σ2(σ + σ′)

σ′2
|Ra|2

E(f, ϕ)E(f ′, ϕ′)

σ′ − σ cos (ϕ− ϕ′)
dϕ. (48)365

We note that the form of the acoustic power given by eq. (48) is generally a function of the direction366

ϕ2 of the horizontal wave vector K of the acoustic waves.367

In the limit δa ≪ 1, this simplifies to a horizontally isotropic form368

Fp,2h(K, fs) ≃ 1

2
ρ2ag

2fs |Ra|2
∫ 2π

0

E(f, ϕ)E(f, ϕ+ π)dϕ. (49)369
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This last expression, with |Ra|2 ≃ |(sin2 θa − n2)|/ cos2 θa, is the one used by Ardhuin & Herbers370

(2013).371

The pressure spectrum can be re-written as a directional spectrum, with the proper change of372

coordinate this gives,373

Fp,2h(θa, ϕ2, fs) =
4π2f 2

s cos θa sin θa
α2
a

Fp,2h(K, fs). (50)374

When δa terms are kept with eq. (48), the acoustic power radiated by the ocean surface in375

direction ϕ2 can be integrated in any range of incidence angles θa,1 to θa,2,376

P (θa,1, θa,2, fs, ϕ2) =
2π2ρag

2

α3
a

f 3
s

∫ θa,2

θa,1

sin θa cos θa377

×
∫ 2π

0

σ2(σ + σ′) |Ra|2E(f, ϕ)E(f, ϕ′)

σ′2 [σ′ − σ cos (ϕ− ϕ′)]
dϕdθa, (51)378

Taking the isotropic form (49) the radiated acoustic power becomes isotropic and the sum over379

all directions is 2π times eq. (51), giving380

2πP (θa,1, θa,2, fs, ϕ2) =
4π3ρag

2

α3
a

f 3
sH(fs/2)

∫ θa,2

θa,1

sin θa cos θa |Ra|2 dθa, (52)381

with units of W/m2/Hz, where the so-called ‘Hasselmann integral’ can be defined from the ‘overlap382

integral’ (Farrell & Munk, 2008) and the wave spectrum in frequency,383

H(f) = [E(f)]2 I(f) =

∫ 2π

0

E(f, ϕ)E(f, ϕ+ π)dϕ. (53)384

The total integrated radiated power, with units of W/m2, is obtained by integrating eq. (52)385

across acoustic frequencies fs. In Fig. 6, the mean acoustic intensity over the year 2018 is rep-386

resented for six ranges of vertical incidence angles. The distribution pattern of sources for the387

vertical angles [0◦, 5◦] shows the effect of bathymetry, unlike the near-horizontal angles with simi-388

lar patterns depending almost solely on the Hasselman integral. For near-vertical angles - [5◦, 10◦]389

and [10◦, 15◦] - the distribution pattern is not continuous, there are resonant points all over the390

globe. The acoustic intensity is higher for near-horizontal angles, as predicted in Fig. 4.391
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Figure 6. Acoustic intensity in W/m2 - computed by integrating eq. 52 over fs - for 6 ranges of in-

cidence angles : A) [θa,1, θa,2] = [0◦, 5◦], B) [θa,1, θa,2] = [5◦, 10◦], C) [θa,1, θa,2] = [10◦, 15◦],

D) [θa,1, θa,2] = [75◦, 80◦], E) [θa,1, θa,2] = [80◦, 85◦], F) [θa,1, θa,2] = [85◦, 90◦]. Mean of a 3-hourly

model over 2018. These were computed from numerical ocean wave model output already described by

Rascle & Ardhuin (2013) and available at (ftp://ftp.ifremer.fr/ifremer/ww3/), using the WAVEWATCH III R©

code (The WAVEWATCH III R© Development Group, 2016)

.

3 PRACTICAL IMPLICATIONS AND DISCUSSION392

3.1 Near-vertical propagation and Rayleigh wave overestimation393

We note that for vertical propagation (θa = 0) the effect of the finite depth changes the amplitude394

by a factor that ranges from 0.125 to 8.5 with sharp maxima corresponding to the organ pipe395

resonance at h = (0.25+n/2)αw/fs, as illustrated in Fig. 5, which is similar to fig. 11 in Ardhuin396

& Herbers (2013).397

The behaviour at other angles is very interesting as θa goes through the different regimes of398

associated seismic waves, from P -waves for sin θa < αa/αs – i.e. θa < 3.41◦ for our choice399

of parameters – to Rayleigh waves, which usually contain most of the microseism signal, with400

arcsinαa/β < θa < arcsinαa/αw corresponding to a range of 5.9 to 12.7◦ which is shaded in Fig.401

7.402

The two maxima that appear in the Rayleigh domain in Fig. 7.A are the two modes that can403

exist at 5000 m depth, whereas only one mode can exist at 1900 m depth. As discussed by Ard-404
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Figure 7. Radiation patterns for an ocean wave period of 10 s, given by the different theories with an ocean

bottom at (A) h = 5000 m, (B) h = 1900 m. Note that when the radiated power is considered, these patterns

must be multiplied by sin θa before integration over θa, as given by eq. 52. The shaded region corresponds

to the domain of seismic Rayleigh waves with arcsin(αa/β) < θa < arcsin(αa/αw).

huin & Herbers (2013) the depth and frequency at which the amplification is maximum is shifted405

compared to Fig. 5. This is because the acoustic water component of these Rayleigh modes do406

not propagate vertically but obliquely at an angle θw, as shown in Fig. 1.B, giving a resonance at407

h = (0.25 + n/2)αw/(fs cos θw).408

Our model certainly overestimates the amplitude of these Rayleigh waves and associated mi-409

crobaroms because we looked for solutions that are homogeneous in space and time. In the solution410

given above, the leak of energy to the atmosphere is the only loss of energy of the Rayleigh waves411

and it compensates the source of energy from the local waves. In reality, two important effects412

limit the microbarom amplitude to a much lower level. First, the ocean storm area of microbarom413

generation may not be large enough to reach the stationary solution, and second there is a much414

larger (6 to 1000 times or more) sink of seismic energy, due to the presence of fluid in the crust,415

varying with the age of the crust (Stutzmann et al., 2012). The dissipation rate of the energy E416

is generally parameterized as proportional to dE/dt = −ΩE/QR where QR is of the order of417

200 to 1000. Including this effect in the present paper amounts to replacing Ω by Ω(1− i/(2QR))418

which is done in Fig. 8. In other words, the Rayleigh wave energy is overestimated when dissi-419



22 De Carlo et al.

pation in the crust is neglected because in that case, the leakage of Rayleigh wave energy to the420

atmosphere is the loss of seismic energy. Hence, our calculation has a seismic attenuation with a421

very large quality factor Qmax = ΩE/S, where S is the source of seismic energy that equals the422

radiated power given by eq. (52): P (arcsin(αa/β), arcsin(αa/αw), fs). Taking twice the kinetic423

energy in the water column as a lower bound for the total energy we find that, for h = 5000 m424

and fs = 0.2 Hz, Qmax > 106 (Supporting information, section S6.3), meaning that the present425

solution overestimates the real microbarom amplitude by a factor that exceeds Qmax/QR > 1000.426

Figure 8. Same as Fig. 6 replacing Ω by Ω(1 − i/(2QR) with QR = 200 in order not to overestimate

Rayleigh wave energy.

Alternatively, instead of looking for the homogeneous solution to the atmosphere-ocean-crust427

problem, we can use solutions for the ocean-crust problem with an energy that grows over the428

source region (Hasselmann, 1963; Ardhuin & Herbers, 2013), and compute the microbaroms ra-429

diated by microseisms (free Rayleigh waves). These microbaroms are radiated both in the source430

region of microseism but also all along the propagation path of the Rayleigh waves, even on land.431

For example, a huge microseism with amplitude a = 10 micrometers vertical displacement of432

the sea or land surface corresponds to an energy flux ρaαaΩ
2a2/2 of only 3 × 10−8W/m2 for433

fs = 0.2 Hz. This is 2000 times smaller than the peak power measured by Bowman & Lees434

(2018). It is thus unlikely that these measurements are dominated by near-vertical propagating435

sound waves. Indeed, the near-horizontal energy level is usually much stronger.436
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3.2 Radiation patterns as a function of azimuth437

The variation of the radiated acoustic power with azimuth ϕ2 has not been described before as438

most studies focused on near-vertical radiation (K = 0). In eq. (51) there are two reasons why the439

radiated power varies with ϕ2 .440

As expressed by the general form given in eq. (51), the radiated power varies with azimuth441

ϕ2 due to the general form of Ra, as shown in figures 3 and 5 but that variation is limited to442

a few percent. More important is the fact that the Hasselmann integral H(f) is modified by the443

interaction of E(f, ϕ) with E(f ′, ϕ′) instead of E(f, ϕ+ π), and should be replaced by,444

H(f, ϕ2) =

∫ 2π

0

σ2(σ + σ′)E(f, ϕ)E(f, ϕ′)

σ′2 [σ′ − σ cos (ϕ− ϕ′)]
dϕ. (54)445

.446

Following the classification in (Ardhuin et al., 2011), the oceanic conditions in which the447

Hasselmann integral takes the largest values correspond to ‘class III’ events, with two narrow448

swells propagating in opposite directions. These are also conditions in which E(f ′, ϕ′) may be449

most different from E(f, ϕ+ π).450

3.2.1 Case of analytical ocean wave spectra451

To illustrate this effect, we take an example of a family of wave spectra adapted from the case452

discussed in (Obrebski et al., 2012). This family of spectra is defined by the analytic expression,453

E(f, ϕ) = E0

[
e
−

(f−f1)
2

2f22
−

(ϕ−ϕ1)
2

2ϕ2
3 + e

−
(f−f3)

2

2f24
−

(ϕ−ϕ4)
2

2ϕ2
5

]
, (55)454

where the f1, f2, f3, f4 parameters define the peak frequency and width for the two swell trains,455

and ϕ1, ϕ3, ϕ4, ϕ5 define the mean direction and width. The present theory is not restricted to456

this family of spectra and generally applies to any wave spectrum. Such an analytical form is457

particularly useful for testing the influence of the discretization when the spectrum is given by a458

numerical model.459

Fig. 9.A shows this spectrum transformed to wavenumber spaceE(kx, ky) = g2E(f, ϕ)/4πσ3,460

with the mean frequency and direction set to f1 = 0.066 Hz, f3 = 0.066 Hz, ϕ1 = 90◦, ϕ3 = 270◦,461
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the widths f2 = 0.007 Hz, f2 = 0.007 Hz, ϕ4 = 8◦, ϕ5 = 8◦, and the normalization factor462

E0 = 20m2/Hz, giving a significant wave height of 2 m.463
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Figure 9. (A) Example spectrum discretized with 36 directions and frequency exponentially spaced with an

1.1 increment from one frequency to the next, typically used in numerical wave models. The spectral density

of the ocean waves is shown in colors, in directions from where the waves come. (B) Resulting integrals

for the acoustic frequency fs = 0.13 Hz, and horizontal propagation (θa = 90◦, K = 0.0025 rad/m). Three

methods were used to compute the integral: the analytic spectral expression or interpolation of the discrete

spectrum using nearest neighbor or linear interpolation.

The azimuthal variation of the generalized Hasselmann integral, as given by eq. (54) is illus-464

trated in Fig. 9.B.465

The exact calculation uses the analytic expression of the spectrum, and exhibits variations of466

7% of the radiated acoustic power as a function of ϕ2, with a maximum in the direction of the467

waves because the spectrum, in k-space is more narrow in the ky than in the kx direction and when468

K is aligned with the y-axis, as shown, the wavenumber vector k′ falls away from the peak faster469

than whenK is aligned with the x-axis. For the present example the azimuthal variation goes away470

when the directional spread is increased from 8 to 12◦ and it has a maximum at 0 and 180◦ for471

wider directional spectra.472

The practical estimation of the integral is very sensitive to the discretization used, which is not473

an issue when K is much smaller than the discretization of the spectrum and the isotropic form474

can be used. Numerical wave models that typically use 10% increments from one frequency to475

the next and 24 or 36 directions do not resolve very well the narrow swell peaks such as those in476
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Figure 10. Same as Fig. 9 with different ocean wave spectra (A) that have mean directions shifted by 5

degrees to ϕ1 = 95◦ and ϕ3 = 265◦ producing the Hasselmann integral in (B). The wave spectrum in

produces the Hasselmann integral in (D), with a peak frequencies shifted by 0.006 Hz to f1 = 0.072 Hz

and f2 = 0.060 Hz. For both cases, the configuration of k and k′ that gives the largest contribution to the

Hasselman integral in indicated in (A) and (C) with arrows.

Fig. 9.A. As a result, a linear interpolation underestimates the integral because the peak appears477

narrower. On average this is corrected by using the nearest point, but that approach can exaggerate478

the anisotropy of the acoustic source.479

Besides causing anisotropic sources when two swell peaks are exactly opposed, the generalized480

integral may broaden the region where sources are significant, as shown in Fig. 10, because it481

allows a wider range of directions and frequencies to interact compared to k = k′ in the simplified482

form.483

3.2.2 General case using numerical wave model output484

In order to test this idea, we have computed the Hasselmann integral from wave-model output485

which are ’real’ spectrum (non idealised spectrum) with the usual form and its generalization in486

the case of the event discussed by Bowman & Lees (2018). Fig. 11 shows modeled maps of wave487
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Figure 11. Maps of the Hasselmann Integral for (A) the isotropic and (B) non-isotropic expressions. In

(B) the black curve around each location represents the Hasselmann integral estimated as a function of

the acoustic propagation azimuth, and plotted in direction from where the acoustic waves are coming and

normalized so that the average radius is half the distance between neighboring locations. (C), (D) and (E)

are showing modeled directional spectra at the C , D, and E locations mentioned in (A) and (B). The large

arrows indicate the wind direction, from the north-east, associated to a broad windsea spectrum which

opposes a more narrow swell spectrum from the south-west.

source magnitude, in color, using the isotropic or azimuth-dependent form of the Hasselmann488

integral over a 10 degree by 10 degree region located to the south-east of New Zealand, valid for489

May 2016, at 06:00 UTC. The wave model used here is very similar to the one used in Ardhuin490

et al. (2015), with a number of discrete directions increased from 24 to 36. This strong microbarom491

source is associated to a strong local wind, up to 18 m/s, blowing against swell coming from a492

remote storm, typical of a class-III event described by Ardhuin et al. (2011).493

The first striking result is that the colors are very similar, with a correlation of 0.9998, meaning494

that the simplified isotropic form is a good approximation of the total radiated power, at least for495
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this example. We also note that the highest sources are most isotropic, such as at location D in496

Fig. 11.B. Where sources are more strongly radiated in one direction, such as at locations C and497

E, this is due to a gradual shift in the direction of both interacting wave trains, the swell from the498

south-west has a local direction that is close to 240◦ at C, and 255◦ at E, and the time evolution of499

the local wind means that the wind sea is rather from the East at C and the North-East at E. In this500

particular example this gives a dominant radiation from the south-east at C and the north at E.501

When averaged over the entire area, the difference between the radiated power in any given502

direction and the isotropic solution is less than 15%, suggesting that the isotropic approximation503

may be accurate enough for most applications.504

4 CONCLUSIONS505

In this paper we have reviewed and unified the microbarom source theories developed by Brekhovskikh506

et al. (1973) and Waxler et al. (2007). A prominent feature of Brekhovskikh et al. (1973), that was507

not taken into account by Waxler et al. (2007), is the radiation pattern as a function of the eleva-508

tion angle θa. In Waxler et al. (2007), the radiation pattern is monopolar due to an assumed lack509

of coherence of the sources at scales comparable to the acoustic wavelength. In Brekhovskikh510

et al. (1973) the acoustic power at near-horizontal incidence that up to 1000 times larger because511

the main coupling of water and air via the vertical velocity of the air-sea interface gives a much512

stronger amplification for grazing angles. Including finite depth ocean effects in Brekhovskikh513

et al. (1973) model is only relevant for near-vertical propagation, and has almost no effect on514

the predicted dominant near-horizontal propagation of infrasound. For shallow propagation an-515

gles that generally correspond to ground-based measurements (i.e. θa > 40◦, relative to verti-516

cal) Brekhovskikh et al. (1973)’s formulation is compared to the more complete depth-dependent517

model presented here. We find that in regions of water depths under 1000 m, which cover 10%518

of the total ocean surface, - Brekhovskikh et al. (1973)’s formulation overestimates the source519

amplitude and underestimates it for deeper waters. On average there is a 7% understimation and520

Brekhovskikh et al. (1973) gives overall acceptable results, with a negligible effect of the water521

depth for near-horizontal propagation angles.522
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For near-vertical propagation, the generation of microbaroms involve both a source mecha-523

nism similar to the one of microseism dominated by the non-linear interaction of near-opposing524

waves, and Rayleigh waves propagating away from microseism sources. However, the associated525

acoustic power is at least 2 orders of magnitude lower than the near-horizontal radiated power.526

These vertical angles can be of interest for altitude measurements such as balloon measurements527

(Bowman & Lees, 2018); in such situation, the bathymetry can still impact the received signal.528

The horizontal anisotropy of the source has also been investigated, leading to the conclusion that,529

for computational applications, the isotropic approximation may be accurate enough and could530

then be used. Hence, the discretization of the wave spectrum might not be an issue.531

Beyond theoretical issues, efforts should be pursued to validate the proposed model by con-532

sidering available observations of infrasound ambient noise as recorded by the global infrasound533

network of the International Monitoring System (IMS) (Ceranna et al., 2019). For practical appli-534

cations, further developments of a numerical model are needed to propagate microbarom signals535

over large distances through a realistic atmosphere. The implementation of this source model,536

based on a state-of-the-art numerical wave model (Ardhuin, 2019) should help building a global537

and time-dependent reference database. Exploiting this database of oceanic noise sources will be538

useful for developing middle-atmospheric remote sensing methods. The evaluation of infrasound539

ambient noise model is essential in the context of the future verification of the Comprehensive nu-540

clear Test Ban Treaty (CTBT), as accurate atmospheric models are basic prerequisite to assess the541

IMS network performance in higher resolution, reduce source location errors, and improve source542

characterization methods.543
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APPENDIX A: GREEN FUNCTION PHASE, SPATIAL CORRELATIONS AND651

TREATMENT BY WAXLER AND GILBERT, 2006652

In order to clarify the difference between our derivation and the derivation by (Waxler & Gilbert,653

2006), we go back to their expression of the atmospheric pressure spectrum as recorded at the654

horizontal position xH and vertical altitude z, from a collection of sources over positions y and y′655

in domain S. The variance of pressure is given by their eq. (49) with x′
H = xH , z′ = z and τ = 0656

〈
P 2
〉

= ρ2
∫ ∞

−∞

∫ ∞

−∞

∫

S

∫

S

〈G(x, y,−τ1)G∗(x, y′, τ − τ2)〉
〈
∂v(y, τ1)

∂τ1

∂v(y′, τ2)

∂τ2

〉

S

d2yd2y′dτ1dτ2

(A.1)

Following their derivation, we use the Fourier in time Ĝ of the Green’s function, representing

the propagation of acoustic waves in a layered medium as a sum of discrete modes. As given by

Waxler & Gilbert (2006)[, eq. 65] the Fourier transform of the Green function for mode j and
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frequency ν is given by,

Ĝ(xH , z,yH , ν) = f(r, z)
∑

j

eikj |xH−yH |

√
kj

ψj(z)ψj(z
′), (A.2)

where r = |xH − yH | is the horizontal distance, the kj are the horizontal wavenumbers pointing657

in the direction of k̂ = (xH − yH)/r, and ψj are normal modes satisfying the bi-orthogonality658

condition and their phases are assumed to be uniformly distributed and statistically independent.659

Considering that for each y in the source |y′
H − y0|/|xH − y0| << 1 with y0 the center of the

source (i.e. the receptor is far from the source), and defining the vector kj = kjk̂, the product of

the Green’s function for yH and its complex conjugate for y′
H writes

Ĝ(xH , z,yH , ν)Ĝ(xH , z,y
′
H , ν)

⋆ = |f(r0, z)|2
∑

j

eikj ·(y
′−y) |ψj(z)|2|ψj(z

′)|2
kj

(A.3)

The phase of this product then contains the phase shift of the propagation from y to y′ with a660

wavenubmer kj . When correlated with the source structure, that contains a phase exp[i(k + q) ·661

(y′ − y)] it gives,662

〈
P 2
〉

= ρ2
∫

S

∫

S

(
|f(r0, z)|2

∑

j

eikj(y
′−y)

|kj|
|ψj(z)|2|ψj(z

′)|2
)

×
(
2

∫ ∫
ν2F (k)F (q)|C+|2|Ω|2ei(k+q)(y−y′)d2kd2q

)
d2yd2y′

= ρ2
∫

S

∫

S

|f(r0, z)|2
∑

j

∫ ∫ [ |ψj(z)|2|ψj(z
′)|2

|kj|
ei(kj−(k+q))(y′−y)

×2ν2F (k)F (q)|C+|2|Ω|2
]
d2kd2qd2yd2y′

This can be simplified as the integral over y′ in the the source area S gives a term proportional to

∫

S

∫

S

ei[(kj−(k+q))·(yH−y′

H)]d2yd2y′ = (2π)2δ(kj − (k+ q))S (A.4)

instead of the (2π)2δ(k+ q) term found by Waxler & Gilbert (2006).663

The pressure variance becomes664

〈
P 2
〉

= ρ2(2π)2 S|f(r0, z)|2
∑

j

∫

k+q=kj

|ψj(z)|2|ψj(z
′)|2

|kj|
2 ν2F (k)F (q)|C+|2|Ω|2d2kd2q.

This is the same as eq. (51) in Waxler & Gilbert (2006), except for the fact that we did not replace665

q with −k, we thus need to compute the the air pressure over the source for all K = kj. Although666
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|K| ≪ |k|, the approximation |K| = 0, which is only strictly valid for an azimuth angle θa = 0,667

leads to very large differences in the source amplitude, up to 30 dB as shown in figure 3.668
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This document presents all the details of derivations necessary to support the paper ”Atmo-6

spheric infrasound radiation from ocean waves in finite depth: a unified generation theory and7

application to radiation patterns”. It follow Brekhovskikh et al. (1973, hereinafter BGKN73), as8

much as possible. Because we use the more common convention that the velocity vector is v = ∇φ9

this leads to changes in signs that are highlighted in red. A notable difference with Waxler &10

Gilbert (2006, hereinafter WG06) is the non-zero value of k·k′ + kk′ and similar terms. Some of11

these were obtained by WG06 using the divergence equation, but not all of them, which misses12

the azimuthal dependence of the solution.13

For convenience we repeat in table 1 the list of notations from the paper, including a few more14

symbols that were not used in the paper.15

S1 EQUATIONS UP TO EQ. (9) IN BGKN7316

We start with the Euler equations for a perfect fluid (no viscosity),17

ρj
(∂vj

∂t
+ (vj · ∇)vj

)
= −∇pj − gρj∇z (S1)18
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Table S1. Notations used in different papers: LH50 stands for (Longuet-Higgins, 1950), BGKN73 stands

for (Brekhovskikh et al., 1973), WG06 stands for (Waxler & Gilbert, 2006) and AH13 stands for (Ardhuin

& Herbers, 2013).

quantity this paper LH50 BGKN73 WG06 AH13

vertical coordinate z −z z z z

angle relative to vertical θa or θw − θ − −
surface elevation ζ ζ ζ ξ ζ

azimuth of spectrum ϕ θ ϕ θ θ

azimuth of acoustic signal θ2 − ϕa − −
velocity potential φ −φ −ϕ φ φ

layer index l − j σ −
sound speed αl c cj cσ α

density ratio m − m − −
horizontal wavenumber K − q − K

radian frequency Ω − Ω − 2πfs

horizontal wavenumbers k, k′ (−uk,−vk) κ, κ1 k, q k, k′

radian frequencies σσ′ σ ω(κ),ω(κ1) ω(k),ω(q) σσ′

pressure p p ρP p p

vertical wavenumbers ν± , µ± − , α λ1,λ2 − la, l

upward amplification g/2αl γ − − −

We then use the compressible form of the Bernoulli Equation. And the mass conservation.19

∂ρj
∂t

+∇(ρjvj) = 0 (S2)20

We do not repeat here the equations (1) to (6) from BGKN73.21

S1.1 About equation (1) in BGKN7322

Eq. (S1) can be rewritten as23

(ρ0 + sρ1 + s2ρ2)

(
∂sv1 + s2v2

∂t
+ (sv1 + s2v2) · ∇(sv1 + s2v2)

)
24

= −∇(p0 + sp1 + s2p2)− g(ρ0 + sρ1 + s2ρ2)∇z. (S3)25
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Its truncation at the different orders in wave slope give,26

• Order 0,27

−∇p0 = gρ0∇z (S4)28

• Order 1,29

ρ0
∂v1

∂t
+ 0 = −∇p1 − gρ1∇z30

However (eq 6) : ∇p1 = ∇(ρ0P1) = P1∇(ρ0) + ρ0∇(P1) = P1ρ0 ·
−g
α2

∇z + ρ0∇(P1) =31

α2ρ1
ρ0

· ρ0 ·
−g
α2

∇z + ρ0∇(P1).32

Equation (S3) for order 1 becomes33

∂v1

∂t
+∇P1 = 0. (S5)34

• Order 2:35

ρ0
∂v2

∂t
+ ρ1

∂v1

∂t
+ ρ0v1∇v1 = −∇p2 − gρ2∇z (S6)36

We similarly obtain

−∇p2 − gρ2∇z = −∇(ρ0P2)− gρ2∇z = −ρ0∇(P2)− α2ρ2
ρ0

∇(ρ0)− gρ2∇z

= −ρ0∇(P2)− α2ρ2
ρ0

· −g
α2

∇z − gρ2∇z = −ρ0∇(P2).

Then,37

∂v2

∂t
+
ρ1
ρ0

∂v1

∂t
+ v1∇v1 = −∇P2.38

Remembering from order 1 that
∂v1

∂t
= −∇P1, one obtains

∂v2

∂t
+∇P2 = −ρ1

ρ0

∂v1

∂t
− v1∇v1 =

ρ1α
2

ρ0α2
∇P1 − v1∇v1

=
1

α2
P1∇P1 − v1∇v1 =

1

2
∇
(P2

1

α2
− v

2
1

)
+ v1 × rotv1

Because the velocity field is irrotational, it can be expressed as the gradient of a potential velocity39

φ,40

vi = +∇φ. (S7)41
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This gives,

∇P1 = −∂∇φ1

∂t

∇P2 = −∂∇φ2

∂t
+

1

2
∇
(P2

1

α2
− (∇φ1)

2

)

Which can also be written42

P1 = −∂φ1

∂t
(S8)43

P2 = −∂φ2

∂t
+

( P2
1

2α2
− (∇φ1)

2

2

)
. (S9)44

45

S1.2 About equation (2) in BGKN73 and the acoustic wave equation46

• Order 1:47

∂ρ1
∂t

+∇(ρ0v1) = 048

⇐⇒ ∂ρ1
∂t

+ ρ0∇v1 + v1∇ρ0 = 049

⇐⇒ ∂ρ1
∂t

= −ρ0∆φ1−∇φ1∇ρ0 (S10)50

51

∂

∂t

(
ρ0 · (6)

)
− α2 · (8) leads to52

∂ρ0P1

∂t
− α2∂ρ1

∂t
−α2ρ0∆φ1−α2∇φ1∇ρ0 = −∂

2ρ0φ1

∂t2
53

⇐⇒ ∂p1
∂t

− α2∂α
−2p1
∂t

−α2ρ0∆φ1+α
2∇φ1ρ0

g

α2
∇z = −ρ0

∂2φ1

∂t2
54

⇐⇒ −α2∆φ1+g
∂φ1

∂z
+
∂2φ1

∂t2
= 055

⇐⇒ ∆φ1 −
g

α2

∂φ1

∂z
− 1

α2

∂2φ1

∂t2
= 0 (S11)56

57

And we retrieve the two equations of system (9) in BGKN73.58

• Order 2:59

∂ρ2
∂t

+∇(ρ0v2 + ρ1v1) = 060

⇐⇒ ∂ρ2
∂t

+ ρ0∇v2 + v2∇ρ0 + ρ1∇v1 + v1∇ρ1 = 061

⇐⇒ ∂ρ2
∂t

= −ρ0∆φ2−∇φ2∇ρ0−ρ1∆φ1−∇φ1∇ρ1 (S12)62

63
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∂

∂t

(
ρ0 · (7)

)
− α2 · (10) leads to:64

∂ρ0P2

∂t
− α2∂ρ2

∂t
−α2ρ0∆φ2−α2∇φ2∇ρ0−α2ρ1∆φ1−α2∇φ1∇ρ1=−∂

2ρ0φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
65

⇐⇒ ∂p2
∂t

− α2∂α
−2p2
∂t

−α2ρ0∆φ2+α
2ρ0

g

α2

∂φ2

∂z
−p1∆φ1−∇φ1∇p1=−ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
66

⇐⇒ −α2ρ0∆φ2+α
2ρ0

g

α2

∂φ2

∂z
−ρ0P1∆φ1−P1∇φ1∇ρ0−ρ0∇φ1∇P1= −ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
67

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
−ρ0P1∆φ1+P1ρ0

g

α2

∂φ1

∂z
−ρ0∇φ1∇P1= −ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
68

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
−ρ0P1

(
∆φ1−

g

α2

∂φ1

∂z

)
−ρ0∇φ1∇P1= −ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
69

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
−ρ0P1

1

α2

∂2φ1

∂t2
−ρ0∇φ1∇P1=−ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
70

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
+ρ0P1

1

α2

∂P1

∂t
−ρ0∇φ1∇P1=−ρ0

∂2φ2

∂t2
+ρ0

∂

∂t

(P2
1

2α2
− (∇φ1)

2

2

)
71

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
+ρ0∇φ1∇

∂φ1

∂t
=−ρ0

∂2φ2

∂t2
−ρ0

∂

∂t

(∇φ1)
2

2
72

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
+ρ0

∂

∂t

(∇φ1)
2

2
= −ρ0

∂2φ2

∂t2
− ρ0

∂

∂t

(∇φ1)
2

2
73

⇐⇒ −α2ρ0∆φ2+ρ0g
∂φ2

∂z
+ρ0

∂2φ2

∂t2
= −ρ0

∂

∂t
(∇φ1)

2
74

⇐⇒ ∆φ2 −
g

α2

∂φ2

∂z
− 1

α2

∂2φ2

∂t2
= +

1

α2

∂

∂t
(∇φ1)

2 (S13)7576

S1.3 About Boundary conditions77

We use the same boundary conditions as in BGKN73 for z = 0 for velocity,78

− ∂φ1

∂z

∣∣∣∣
z=0

+
∂ζ1
∂t

= 0 (S14)79

− ∂φ2

∂z

∣∣∣∣
z=0

+
∂ζ2
∂t

= −
(
− ∂2φ1

∂z2

∣∣∣∣
z=0

ζ1 + ∇φ1|z=0 ∇ζ1
)

(S15)80

81

And for pressure,82

(Pw,1 −mPa,1)z=0 − g(1−m)ζ1 = 0 (S16)83

(Pw,2 −mPa,2)z=0 − g(1−m)ζ2 = −
(
∂Pw,1

∂z
−m

∂Pa,1

∂z

)

0

ζ184

+
g

α2
a

(n2Pw,1 −mPa,1)0ζ1 − g2

2α2
a

(n2 −m2)ζ21 (S17)85

Here is a summary of the system of equation that corresponds to eq. (9) in BGKN7386
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∆φj,i −
g

α2
j

∂φj,i

∂z
− 1

α2
j

∂2φj,i

∂t2
= Sj,i Pj,i = −∂φj,i

∂t
+ Fj,i

− ∂φj,i

∂z

∣∣∣∣
z=0

+
∂ζi
∂t

= Qj,i (Pw,i −mPa,i)z=0 − g(1−m)ζi = Ri

where,

Fj,1 = Sj,1 = Qj,1 = R1 = 0

Fj,2 =
P2

j,1

2α2
j

− (∇φj,1)
2

2
, Sj,2 = +

1

α2
j

∂

∂t
(∇φj,1)

2

Qj,2 = −∇φj,1|0∇ζ1+
∂2φj,1

∂z2

∣∣∣∣
z=0

ζ1

R2 = −
(
∂Pw,1

∂z
−m

∂Pa,1

∂z

)

0

ζ1 +
g

α2
a

(n2Pw,1 −mPa,1)0ζ1 −
g2

2α2
a

(n2 −m2)ζ21

m = ρa,0/ρw,0, n = αa/αw, δa =

(
g

α2
ak

)1/2

=
σ

αak
, δw = nδa

87

S2 SOLVING FOR FIRST ORDER AND EXPRESSING THE SECOND ORDER88

PROBLEM89

S2.1 First order90

By Fourier transform in horizontal space and time we can take91

φj,1 = −isσ
∑

Φj,1(z)Ze
i(k·x−sσt) (S18)92

The boundary condition in z = 0 leads to93

Φj,1(z = 0) = 1. (S19)94

Assuming Φj,1(z) = fj(z)e
γjz with γj = g/2α2

j one obtains,95

• for the air96

φa,1 =
∑

i
sσ

ka
e−kazZei(k·x−sσt) (S20)97
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with

ka = −γa + ka0

= − g

2α2
a

+

√
k2 − γ2a +

gγa
α2
a

− σ2

α2
a

= − g

2α2
a

+ k(1− g2

4α4
ak

2
+

g2

2α4
ak

2
− σ2

k2α2
a

= −k g

2kα2
a

+ k

(
1− δ4a

4
+
δ4a
2

− δ2a

)1/2

= −kδ
2
a

2
+ k

(
1− δ2a

2

)

= k
(
1− δ2a

)

• for the water :98

φw,1 =
∑

−isσ
kw0 cosh (kw0(z + h))− γw sinh (kw0(z + h))

k2w sinh (kw0h)
eγwzZei(k·x−sσt) (S21)99

with k2w = k2w0 − γ2w = k2(1− 2δ2w)100

If we consider δ2w to be negligible (δw = n2δ2a ≃ 0.05δ2a) we obtain :101

φw,1 =
∑

−isσ
cosh (kw0(z + h))

k sinh (kw0h)
eγwzZei(k·x−sσt) (S22)102

For simplicity we will now write that :103

φw,1 =
∑

−isσfw,k(z)e
γwzZei(k·x−sσt) (S23)104

S2.2 Second order105

At second order, the effects of waves comes into the pressure and velocity boundary conditions106

at the interfaces, but also as forcing terms on the right hand side of the wave equation. All these107

different terms take different forms, in particular for waves in intermediate or shallow water (Ard-108

huin & Herbers, 2013). In the limit of deep water waves, kh≫ 1, and neglecting δ2w terms, all the109

wave forcing terms can be expressed as a function of p̂2,u, defined as110

p̂2,u(x, y, z) = ρw|∇φ1|2 =
ρwg

2

sσs′σ′

∑
(k·k′ − kk′)ZZ ′e(k+k′)zeiΘ (S24)111
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with Θ = K·x−Ωt, K = k+k
′, and Ω = sσ+s′σ′. A the surface, z = 0, this equivalent pressure,112

correspond to the pressure that drives microseisms as given by Hasselmann (1963, eq. 2.12).113

In the following, we will neglect all the short wavelength components that correspond to the114

middle line of eq. (2.13) of (Hasselmann, 1963), keeping only the large wavelengths that excite115

microbaroms, and for which |k+ k
′| ≪ |k|.116

Given that acoustic waves in the atmosphere are much slower than those in water, we will retain117

δ2a terms. As a result, following (Brekhovskikh et al., 1973), we cannot use the approximation118

k·k′ ≃ 0, but instead, using k·k′ < 0 for those components that produce microseisms, we can use119

K

k
=
Kαa

2σ

2σ

kαa

= 2 sin θaδa (S25)120

and the law of cosine in triangles,121

2k·K = k2 +K2 − k′2 (S26)122

this gives,123

kk′ + k·k′ = kk′


1−

((−k·k′

kk′

)2
)1/2


 = kk′

[
1−

((
K·k′ − k

′·k′

kk′

)(
k·K− k·k

kk′

))1/2
]

124

= kk′

[
1−

((−K·k+K2 − k′2

kk′

)(
k·K− k2

kk′

))1/2
]

125

= kk′


1−

(
k2k′2 − (K·k)2 +K·k

(
k2 +K2 − k′2

)
− k2K2

k2k′2

)1/2



126

= kk′

[
1−

(
1 +

−(K·k)2 + 2K·k(K·k)− k2K2

k2k′2

)1/2
]

127

= kk′

[
1−

(
1 +

(K·k)2 − k2K2

k2k′2

)1/2
]

128

≃ kk′
[
−1

2

(
(K·k)2
k2k′2

− K2

k′2

)]
≃ kk′

1

2

K2

k′2

[
1−

(
(K·k)2
k2K2

)]
129

≃ 2kk′ sin2 θaδ
2
a

[
1−

(
(k·K)2

k2K2

)]
= 2kk′ sin2 θaδ

2
a

[
1− cos2(ϕ2 − ϕ)

]
(S27)130

which is a function of the azimuth ϕ2 of the acoustic wave propagation, with cos(ϕ2 − ϕ) =131

k·K/(kK).132
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Then,133

k·k′ − kk′ ≃ −2kk′
(
1− sin2 θaδ

2
a

[
1− cos2(ϕ2 − ϕ)

])
(S28)134

This gives,135

p̂2,u(x, y, z) ≃ −2ρwσσ
′
∑(

1− sin2 θaδ
2
a

[
1− cos2(ϕ2 − ϕ)

])
ZZ ′e(k+k′)zeiΘ (S29)136

Other similar terms have more simple forms with no azimuthal dependency137

1

2

(
k2 + k·k′ + k′2 + k·k′

)
=

1

2
(k·K+ k

′·K) =
1

2
K2 ≃ 2k2 sin2 θaδ

2
a. (S30)138

S3 SECOND ORDER SOLUTION139

S3.1 General form of the solution in the water layer140

The homogeneous solution is obtained for Sw,2 = 0,141

φw,2,h(x, y, z, t) =
∑

Φw,2,he
iΘ, with Θ = K·x−Ωt, K = k+k

′, Ω = sσ+s′σ′ (S31)142

Assuming a eiµz variation over the vertical and replacing in the homogeneous equation (S13) gives,143

µ2 + i
g

α2
w

µ+ (K2 − Ω2/α2
w) = 0 (S32)144

with solutions,145

µ± = −i
g

α2
w

±
√

g2

2α4
w

+ (Ω2/α2
w −K2) ≃ ±kw2,0(1 +O(δ2w)) (S33)146

with the complex wavenumber kw2,0 =
√
Ω2/α2

w −K2 so that the homogeneous solution is147

Φw,2,h = W+e
iµ+z +W−e

iµ−z. (S34)148

We recall that the wave equation is forced by,149

Sw,2 = +
1

α2
w

∂

∂t
(∇φ1)

2 = +
1

ρwα2

∂p̂2,u
∂t

(S35)150

This forcing adds a particular solution of order δ2w that could be neglected here but we will only151

keep the lowest order term to be consistent with BGKN73. This is also discussed by (Longuet-152

Higgins, 1950) and (Waxler & Gilbert, 2006). We will only give its expression in the limit of deep153

water, i.e. kh≫ 1.154
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we recall the right hand side,155

Sw,2(x, z, t) ≃ +
1

ρwα2
w

∂p̂2,u(x, y, z, t)

∂t
= − g2

α2
a

∑
i
sσ + sσ′

sσsσ′
(k·k′ − kk′)ZZ ′e(kw+k′w)zeiΘ.

(S36)156

Looking for a solution of the form157

φw,2,p =
∑

Φw,2,pe
iΘ. (S37)158

we replace in the wave equation (S13) and find159

Φw,2,p ≃ −i
g2

u
· sσ + sσ′

sσsσ′
(k·k′ − kk′)ZZ ′e(kw+k′w)z. (S38)160

with the denominator defined by161

u = α2
w

[
−K2 +

Ω2

α2
w

+ (kw + k′w)
2

]
+ g(kw + k′w) ≃ α2

w(kw + k′w)
2 ≃ 4α2

wk
2. (S39)162

Of particular interest is the long-wavelength part – with s = s′ – of the vertical derivative of163

φw,2,p, given by,164

∂φw,2,p

∂z
≃

∑
−is

g2

4α2
wk

2

2σ(kw + k′w)

σσ′
(k·k′ − kk′)ZZ ′e(kw+k′w)zeiΘ,165

≃ +
∑

isδ2w
g

σ
2k2ZZ ′e(kw+k′w)zeiΘ. (S40)166

S3.2 General form of the solution in the air layer167

For the air, we only consider here acoustic waves radiating upward, giving the homogeneous so-168

lution,169

φa,2,h(x, y, z, t) =
∑

sA+ZZ
′eν+zeiΘ, (S41)170

where171

ν+ =
g

α2
a

+ i

√
g2

2α4
+ (Ω2/α2

w −K2). (S42)172

For the particular solution, we recall the right hand side,173

Sa,2(x, z, t) ≃ +
1

ρwα2
a

∂p̂2,u(x, y,−z, t)
∂t

= − g2

α2
a

∑
i
sσ + sσ′

sσsσ′
(k·k′ − kak

′
a)ZZ

′e−(ka+k′a)zeiΘ.

(S43)174
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Looking for a solution of the form175

φa,2,p =
∑

Φa,2,pe
iΘ. (S44)176

we replace in the wave equation (S13) and find177

Φa,2,p ≃ −i
g2

u

sσ + sσ′

sσsσ′
(k·k′ − kak

′
a)ZZ

′e−(ka+k′a)z. (S45)178

with the denominator defined by179

u = α2
a

[
−K2 +

Ω2

α2
a

+ (ka + k′a)
2

]
+ g(ka + k′a) ≃ α2

a(ka + k′a)
2 ≃ 4α2

ak
2. (S46)180

181

u = α2
a

[
−K2 +

Ω2

α2
a

+ (ka + k′a)
2

]
+ g(ka + k′a)182

≃ α2
ak

2

(
4δ2a cos

2 θa +

(
1 +

k′

k

)2

(1− 2δ2a) +
g

α2
ak

2
(ka + k′a)

)
183

≃ α2
ak

2(4δ2a cos
2 θa + 4(1− 2δ2a) + 2δ2a(1− δ2a))184

≃ 4α2
ak

2(1− δ2a(sin
2 θa +

1

2
)) ≃ 4α2

ak
2(1 +O(δ2a)) (S47)185

Of particular interest is the long-wavelength part – with s = s′ – of the vertical derivative of186

φa,2,p, given by,187

∂φa,2,p

∂z
≃ +

∑
is

g2

4α2
ak

2
(1−O(δ2a))

2σ(ka + k′a)

σσ′
(k·k′ − kak

′
a)ZZ

′e−(ka+k′a)zeiΘ,188

≃ +
∑

is
g2

4α2
ak

2
(1−O(δ2a))

2σ(k + k′)(1− δ2a)

σσ′

(
k·k′ − kk′ − 2kk′δ2a

)
ZZ ′e−(ka+k′a)zeiΘ,189

≃ +
∑

isδ2a
g

σ
(k·k′ − kk′) (1 +O(δ2a))ZZ

′e−(ka+k′a)zeiΘ,190

≃ −
∑

isδ2a2σ
′kZZ ′e−(ka+k′a)zeiΘ. (S48)191

S3.3 The BGKN terms - Fj,2, Qj,2, R2192

S3.3.1 In the water layer193

To simplify the calculation of these terms we use kh ≫ 1 for waves in deep water, and kw0 ≃ k,194

we may also use eq. (S27) and eq. (S28). These simplifications lead to :195

φw,1 =
∑

−i
sσ

k
ekw0zeγwzZei(k·x−sσt) (S49)196
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And then we obtain the second order terms :197

Fw,2(z = 0) =
P2

w,1

2α2
w

∣∣∣∣
0

−
(
∇φw,1

)2

2

∣∣∣∣∣
0

198

=
∑ ss′σσ′

2kk′

[
(
sσs′σ′

α2
w

− kk
′ + kk′)

]
ZZ ′eiΘ199

≃
∑

σ2

[
1 + δ2a(

n2

2
− sin2 θa

[
1− cos2(ϕ2 − ϕ)

]]
ZZ ′eiΘ (S50)200

201

Using the law of cosines in a triangle,202

k′2 = k2 +K2 − 2k·K (S51)203

so that204

√
k′ =

√
k

(
1 +

K2 − 2k·K
k2

)1/4

≃
√
k

(
1 +

1

4

K2 − 2k·K
k2

)
(S52)205

we get206

Qw,2|z=0 = +
∂2φw,1

∂z2

∣∣∣∣
0

ζ1−∇φw,1|0 · ∇ζ1207

≃ −i
∑[

sσk + s′σ′k′

2
+

k·k′

2

(
sσ

k
+
s′σ′

k′

)]
ZZ ′eiΘ208

= −i
∑[

sσ
1

2k

(
k2 + k·k′

)
+ s′

σ′

2k′
(
k′2 + k·k′

)]
ZZ ′eiΘ209

≃ −i
∑[

sσ
k·(k+ k

′)

2k
+ s′σ′k

′·(k′ + k)

2k′

]
ZZ ′eiΘ210

≃ −i
∑[

sσ
k·K
2k

+ s′σ′k
′·K
2k′

]
ZZ ′eiΘ211

≃ −i
∑

s

[
σ

2k
(k·K+ k

′·K) +
σ′k − σk′

2k′k
(k′·K)

]
ZZ ′eiΘ212

≃ −i
∑

sσk

[
K2

2k2
+
√
g

√
k −

√
k′

2kσ
√
kk′

(
−k·K+K2

)
]
ZZ ′eiΘ213

≃ −i
∑

sσk

[
2δ2a sin

2 θa +
1

4k2
(
2k·K−K2)

) 1

2k2
(
−k·K+K2

)]
ZZ ′eiΘ214

≃ −i
∑

sσk

[
2δ2a sin

2 θa −
K2

4k2

(
k·K
kK

)2
]
ZZ ′eiΘ215

≃ −i
∑

sσk

[
2δ2a sin

2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)]
ZZ ′eiΘ. (S53)216

217

S3.3.2 In the air218

In a similar way we obtain :219
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Then,220

Fa,2(z = 0) =
P2

w,1

2α2
w

∣∣∣∣
0

−
(
∇φw,1

)2

2

∣∣∣∣∣
0

221

=
∑ ss′σσ′

2kak′a

[
sσs′σ′

α2
a

− kk
′ + kak

′
a

]
ZZ ′eiΘ222

=
∑

ss′σσ′(1 + 2δ2a)

[
sσs′σ′

2kk′α2
a

− kk
′ − kk′ + 2δ2akk

′

2kk′

]
ZZ ′eiΘ223

≃
∑

σ2

[
1 + δ2a

(
3

2
− sin2 θa

[
1− cos2(ϕ2 − ϕ)

])]
ZZ ′eiΘ (S54)224

225

And using :226

sσk + s′σ′k′

2
− k·k′

2

(
sσ

k
+
s′σ′

k′

)
= sσ

1

2k

(
k2 − k·k′

)
+ s′

σ′

2k′
(
k′2 − k·k′

)
227

= sσ
1

2k

(
2k2 − k·K

)
+ s′

σ′

2k′
(
2k′2 − k

′·K
)

228

= sσk + s′σ′k′ −
[
sσ

k·K
2k

+ s′σ′k
′·K
2k′

]
229

≃ sσk

[
2− 2δ2a sin

2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)]
(S55)230

231

one gets :232

Qa,2|z=0 = +
∂2φa,1

∂z2

∣∣∣∣
0

ζ1−∇φa,1|0 · ∇ζ1233

= +i
∑[

sσka + s′σ′k′a
2

+
k·k′

2

(
sσ

ka
+
s′σ′

k′a

)]
ZZ ′eiΘ234

= +i
∑[

sσk + s′σ′k′

2
(1− δ2a) +

k·k′

2

(
sσ

k
+
s′σ′

k′

)
(1 + δ2a)

]
ZZ ′eiΘ235

= +i
∑[

sσk + s′σ′k′

2
+

k·k′

2

(
sσ

k
+
s′σ′

k′

)
− δ2a ·

(
sσk + s′σ′k′

2
−k·k′

2

(
sσ

k
+
s′σ′

k′

))]
ZZ ′eiΘ236

≃ +i
∑

sσk2δ2a

[
sin2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)
−
[
1− δ2a sin

2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)]]
ZZ ′eiΘ237

≃ −i
∑

sσk2δ2a

[
1− sin2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)
(1 + δ2a)

]
ZZ ′eiΘ (S56)238

239
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S3.3.3 R2 coefficient240

R2 = −
(
∂Pw,1

∂z
−m

∂Pa,1

∂z

)

0

ζ1 +
g

α2
a

(n2Pw,1 −mPa,1)0ζ1 −
g2

2α2
a

(n2 −m2)ζ21241

=
∑[

σ2 + σ′2

2
· (1−m)− δ2a

σ2 + σ′2

2
(n2 +m(1 + δ2a))−

δ2a
2

σ2 + σ′2

2
(n2 −m2)

]
ZZ ′eiΘ242

≃
∑[

σ2 ·
(
1−m− δ2a

(
3n2

2
+m

(
1− m

2
+ δ2a

)))]
ZZ ′eiΘ (S57)243

244



Supporting information for ”Atmospheric infrasound radiation...” - 15 -

S4 MATRIX PROBLEM FOR THE SECOND ORDER AMPLITUDES245

• Velocity continuity at z = 0246

∂φa,2

∂z

∣∣∣∣
0

+ Qa,2 =
∂φw,2

∂z

∣∣∣∣
0

+ Qw,2 (S58)247

⇐⇒ ν+A+ − µ−W− − µ+W+ =
∂Φw,2,p

∂z

∣∣∣∣
0

− ∂Φa,2,p

∂z

∣∣∣∣
0

− Qa,2+ Qw,2 (S59)248

249

• Pressure continuity at z = 0250

(
∂Pw,2

∂t
−m

∂Pa,2

∂t

)

0

− g(1−m)
∂ζ2
∂t

=
∂R2

∂t
251

⇐⇒
(
∂Pw,2

∂t
−m

∂Pa,2

∂t

)

0

−g(1−m)
∂φa,2

∂z

∣∣∣∣
0

− g(1−m)Qa,2 =
∂R2

∂t
252

⇐⇒ − ∂2φw,2

∂t2

∣∣∣∣
0

+
∂Fw,2

∂t

∣∣∣∣
0

+m
∂2φa,2

∂t2

∣∣∣∣
0

−m
∂Fa,2

∂t

∣∣∣∣
0

−g(1−m)
∂φa,2

∂z

∣∣∣∣
0

− g(1−m)Qa,2 =
∂R2

∂t
253

⇐⇒ − Ω2 (−φw,2,p(0)−W+−W−+mφa,2,p(0)+mA+) + iΩ(mFa,2(0)− Fw,2(0))254

−g(1−m)(φ′
a,2,p(0) + νA+ +Qa,2) =

∂R2

∂t
(S60)255

256

• Boundary condition at z = −h257

This boundary condition is given as an example, a more realistic boundary condition will be de-258

veloped further:259

∂Φw,2,p

∂z
(−h) + µ−W−e

−µ−h + µ+W2e
−µ+h = 0 (S61)260

Then we can write the boundary conditions system as a matrix problem,261




ν −µ− −µ+

−mΩ2 − g(1−m)ν Ω2 Ω2

0 µ−e
−µ−h µ+e

−µ+h




·




A+

W−

W+




=




Λ1

Λ2

Λ3




(S62)262

Because we have assumed kh≫ 1 we can neglect the pbot term of (Ardhuin & Herbers, 2013)263

in Λ3, and the Λ forcing terms are,264

Λ1 =
∂φw,2,p

∂z

∣∣∣∣
0

− ∂φa,2,p

∂z

∣∣∣∣
0

−Qa,2+Qw,2 (S63)265

Λ2 = −Ω2
(
φw,2,p(0)−mφa,2,p(0)

)
−iΩ

(
mFa,2(0)−Fw,2(0)

)
+g(1−m)(φ′

a,2,p(0) +Qa,2)+
∂R2

∂t
266

Λ3 = − ∂φw,2,p

∂z

∣∣∣∣
−h

(S64)267

268
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SIMPLIFIED FORMS USED:

Fw,2(z = 0) ≃
∑

σ2[1−sin2 θaδ
2
a(1− cos2(ϕ2−ϕ)) +

δ2an
2

2
]ZZ ′eiΘ O(σ2) +O(σ2δ2

a
sin2 θa)

Qw,2(z = 0) ≃ −i
∑

sσk2 sin2 θaδ
2
a(1−

1

2
cos2(ϕ2−ϕ))ZZ ′eiΘ O(σδ2

a
sin2 θa)

Fa,2(z = 0) ≃
∑

σ2[1−sin2 θaδ
2
a(1−cos2(ϕ2−ϕ)) +

3

2
δ2a]ZZ

′eiΘ O(σ2) +O(σ2δ2
a
sin2 θa)

Qa,2(z = 0) ≃ −i
∑

sσk2δ2a[1−sin2 θa(1−
1

2
cos2(ϕ2−ϕ))]ZZ ′eiΘ O(σδ2

a
) +O(σδ2

a
sin2 θa)

φw,2,p(z = 0) ≃ i
∑

sσδ2an
2ZZ ′eiΘ O(σδ2

a
n
2)

∂φw,2,p

∂z

∣∣∣∣
z=0

≃ i
∑

sσ2kδ2an
2ZZ ′eiΘ O(σδ2

a
n
2)

φa,2,p(z = 0) ≃ i
∑

sσδ2aZZ
′eiΘ O(σδ2

a
) +O(σδ2

a
sin2 θa)

∂φa,2,p

∂z

∣∣∣∣
z=0

≃ −i
∑

sσ2kδ2aZZ
′eiΘ O(σδ2

a
)

R2 ≃
∑

−σ2(1−m−δ2a(3n2/2 +m))ZZ ′eiΘ O(σ2)

∂R2

∂t
≃ is

∑
2σ3(1−m−δ2a(3n2/2 +m))ZZ ′eiΘ O(σ3)

ν± = 2iδak
(
± cos θa − i

δa
4

)

µ± = 2iδak
(
∓ il − i

δa
4
n2
)

sin θa =
Kαa

Ω
,

Ω ≃ 2σ, n =
αa

αw

, l = (sin2 θa − n2)1/2,

δw =

(
g

kα2
a

)1/2
αa

αw

= δan

269

S4.1 Matrix 2x2 : BGKN73270

When the ocean is assumed to have an infinite depth, we consider the atmosphere and ocean to be271

half spaces, with the continuity of velocity and pressure at z = 0 giving a 2 by 2 matrix,272

M =




ν −µ−

−mΩ2 − g(1−m)ν Ω2


 (S65)273
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The solution is given by Cramer’s method274

A+ =
detM1

detM
(S66)275

with276

detM1 =

∣∣∣∣∣∣∣

Λ1 −µ−

Λ2 Ω2

∣∣∣∣∣∣∣
(S67)277

278

detM =

∣∣∣∣∣∣∣

ν −µ−

−mΩ2 − g(1−m)ν Ω2

∣∣∣∣∣∣∣
= νΩ2 −mµ−Ω

2 − g(1−m)νµ− (S68)279

Here are the different pieces of detM,280

• νΩ2 :

νΩ2 = 4σ2

(
g

2α2
a

+ i
Ω

αa

cos θa

)

= i8σ2k

(
−i

g

4kα2
+

σ

kαa

cos θa

)

= 8iσ2kδa

(
cos θa − i

δa
4

)

• −mµ−Ω
2 :

−mµ−Ω
2 ≃ −m4σ2 · 2iδak

[
il − i

δa
2
n2

]

≃ −8iσ2kδam [il]

• −g(1−m)νµ− ,281

−g(1−m)νµ− ≃ −g(1−m)2iδak

(
cos θa − i

δa
4

)
2iδak

(
il + i

δa
4
n2

)
282

≃ 4σ2δakδa(il cos θa +O(δa))283

≃ 8iσ2kδa

[
1

2
δal cos θa

]
284

This gives detM, keeping only δ2a (one is in factor and should be remove when doing the285

ratio),286

det M = i8σ2δak

[
−i
δa
4
+ cos θa − iml +

δa
2
cos θal

]
287

det M ≃ 8iσ2kδa

[
cos θa

(
1+

δa
2
l

)
− i

(
δa
4
+ml

)]
(S69)288

289
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In green there is a difference with BGKN73 denominator, that is coming from the ∂ζ2/∂t term in290

the Bernoulli equation for the pressure at z = 0.291

Now the numerator is,292

detM1 = Λ1Ω
2 + µ−Λ2293

= Ω2

(
∂φw,2,p

∂z

∣∣∣∣
0

− ∂φa,2,p

∂z

∣∣∣∣
0

−Qa,2+Qw,2

)
+ µ−

(
− Ω2

(
Φw,2,p(0)294

−mΦa,2,p(0)
)
−isΩ

(
mFa,2(0)−Fw,2(0)

)
+ g(1−m)(Φ′

a,2,p(0) +Qa,2)+
∂R2

∂t

)
295

≃ Ω2

(
∂φw,2,p

∂z

∣∣∣∣
0

− ∂φa,2,p

∂z

∣∣∣∣
0

−Qa,2+Qw,2

)
296

+µ−

(
isΩFw,2(0)+

∂R2

∂t

)
(S70)297

where eqs. (S40), (S48) , (S56), (S50) give298

Ω2 ∂φw,2,p

∂z

∣∣∣∣
0

= 4σ2 · isδ2an2σ2k299

≃ 8iσ2kδasσδan
2 (S71)300

−Ω2 ∂φa,2,p

∂z

∣∣∣∣
0

= −4σ2 · (−i)s2σkδ2a301

≃ 8iσ2kδasσδa (S72)302

−Ω2Qa,2 ≃ −4σ2 · (−i)s2σkδ2a

(
1−sin2 θa

(
1− 1

2
cos2(ϕ2−ϕ)

))
303

≃ 8iσ2kδaσsδa

(
1−sin2 θa

(
1− 1

2
cos2(ϕ2−ϕ)

))
(S73)304

+Ω2Qw,2 ≃ 4σ2 · i2σskδ2a
(
− sin2 θa

(
1− 1

2
cos2(ϕ2−ϕ)

))
305

≃ 8iσ2kδaσsδa

(
− sin2 θa

(
1− 1

2
cos2(ϕ2−ϕ)

))
(S74)306

+isΩµ−Fw,2(0) ≃ i2sσ · 2δak(
δa
4
n2 − l) · σ2[1− sin2 θaδ

2
a(1− cos2(ϕ2 − ϕ)) + δ2an

2/2]307

≃ −8iσ2kδaσs

[
l

2
− δa

8
n2 − l

2
sin2 θaδ

2
a

[
1− cos2(ϕ2 − ϕ)

]]
(S75)308

µ−
∂R2

∂t
= 2δak

(
δa
4
n2 − l

)
is2σ3(1−m)309

≃ −8iδakσ
2σs

[
l

2
− δa

8
n2

]
310

Collecting all the terms we find,311
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det M1 ≃ −8iσ2kδaσs

[
l − δa

4
n2 − δa + 2δa sin

2 θa(1−
1

2
cos2 ϕ2) + δa

(
n2 − 1

)]
312

≃ −8iσ2kδaσs

[
l − δa

[
2− 2 sin2 θa(1−

1

2
cos2 ϕ2) +

5

4
n2

]]
313

≃ −8iσ2kδaσs

[
l − 2δa

[
1− sin2 θa(1−

1

2
cos2 ϕ2) +

5

8
n2

]]
(S76)314

315

Then, we find the same expression as in BGKN73 numerator and the δa term is larger than the one316

in WG06, with 2 instead of 3/2.317

The main term arises from the pressure boundary condition and from the difference between the318

pressure and the temporal derivative of the potential velocity.319

We recall that the homogeneous atmospheric potential that radiates from the surface is given320

by eq. (S41),321

φa,h,2(z) =
∑

sA+ZZ
′eν+zeiΘ, (S77)322

with323

ν ≃ g

2α2
a

+ i
Ω

αa

cos θa (S78)324

and325

A+ ≃ −σ l − 2δa
[
1− sin2 θa

(
1− 1

2
cos2(ϕ2 − ϕ)

)
+ 5

8
n2
]

cos θa
(
1+ δa

2
l
)
− i
(
δa
4
+ml

) . (S79)326

S5 ADDING THE SOLID EARTH327

The solid Earth is characterized by density ρs, compression velocity αs and shear velocity β.328

Then the velocity potential writes,329

φw,2 =
∑

[(W−e
µ−z +W+e

µ+z)ZZ ′ + Φw,2,p] e
iΘ, for − h < z < ζ (S80)330

φa,2 =
∑

[sA+e
ν+zZZ ′ + Φw,2,p] e

iΘ, for ζ < z (S81)331

All the potentials share the same phase, Θ = K·x − Ωt, Ω = s(σ + σ′), but they differ by their332

vertical structures and amplitudes.333

The boundary conditions for ocean/atmosphere interfaces remain the same. For the ocean bot-334

tom, the motion in the crust is given by velocity potentials for compression and shear waves in the335
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solid Earth, we follow here the treatment in (Ardhuin & Herbers, 2013). Neglecting the effect of336

gravity, crustal motions can be separated in an irrotational part with a velocity potential φc and a337

rotational part with a stream function ψ, both solutions to Laplace’s equation.338

φc = Cpe
χp(z+h)eiΘ, (S82)339

ψ = Cse
χs(z+h)eiΘ, (S83)340

with341

χp =

√
K2 − Ω2

α2
s

, and χs =

√
K2 − Ω2

β2
. (S84)342

where αs and β are respectively the compression and the shear wave speed in crust. Typically β343

ranges from 2800 to 3200 m s−1; and αs =
√
3β. And ρs ≃ 2500 kg m−3. The constants Cp and344

Cs have dimensions of m2/s and are determined by the boundary conditions at the ocean bottom.345

With λe and µe the Lame elasticity parameters of the crust, Hooke’s law of elasticity gives346

τzz = λe

(
∂ξx
∂x

+
∂ξz
∂z

)
+ 2µe

∂ξz
∂z

, (S85)347

τxz = µe

(
∂ξx
∂z

+
∂ξz
∂x

)
. (S86)348

We recall that the compression and shear velocity are related to the Lame parameters,349

α2
c =

λe + 2µe

ρs
, (S87)350

β2 =
µe

ρs
. (S88)351

The zero tangential stress on the ocean bottom τxz(z = −h) = 0 yields the following relation-352

ship between Cp and Cs, which is typical of seismic Rayleigh waves (Stoneley, 1926),353

Cs =
2iKχp

χ2
s +K2

Cp =
2iβ2Kχp

2β2K2 − Ω2
Cp. (S89)354

We can now eliminate also Cp using the continuity of the vertical velocity at the bottom,355

∂φ2

∂z
=

∂φc

∂z
+
∂ψ

∂x
at z = −h (S90)356

W+µ+e
−µ+h +W−µ−e

−µ−h = χpCp + iKCs (S91)357

= χpCp + iK
2iβ2Kχp

2β2K2 − Ω2
Cp (S92)358

=
χpΩ

2

Ω2 − 2K2β2
Cp (S93)359
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and the continuity of normal stresses, using the result from (Ardhuin et al., 2013) is360

−ρw
∂φ2

∂t
= τzz z = −h (S94)361

ρwΩise
−µ+hW+ + ρwΩisW−e

−µ−h = rAHCp (S95)362

(S96)363

where364

rAH =
is

Ω
ρs

[
− 4β4K2χpχs

Ω2 − 2K2β2
+
(
Ω2 − 2K2β2

)]
. (S97)365

Defining366

r± =

isρwΩ
χpΩ

2

Ω2 − 2K2β2

µ±rAH

(S98)367

=
isρwΩ

χpΩ
2

Ω2 − 2K2

i

Ω
µ±ρs

[
− 4β4K2χpχs

Ω2 − 2K2β2
+
(
Ω2 − 2K2β2

)] , (S99)368

=
ρwχpΩ

4

µ±ρs
[
(Ω2 − 2K2β2)2 − 4β4K2χpχs

] (S100)369

we combine these two boundary conditions by subtracting r times the second equation to find a370

condition for the bottom velocities on the water side,371

µ+(1− r+)e
−µ+hW+ + µ−(1− r−)µ−e

−µ−hW− = 0. (S101)372

We thus have the matrix equation373

M(A+, W−, W+)
T = (Λ1, Λ2, 0)

T (S102)374

with375

M =




ν+ −µ− −µ+

−mΩ2 − g(1−m)ν+ Ω2 Ω2

0 (1− r−)µ−e
−µ−h (1− r+)µ+e

−µ+h




(S103)376

and we use the following simplification,377

Λ1 =
∂Φw,2,p

∂z

∣∣∣∣
0

− ∂Φa,2,p

∂z

∣∣∣∣
0

−Qa,2 +Qw,2 (S104)378

Λ2 = iΩFw,2(0) +
∂R2

∂t
(S105)379
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Assuming mu+ ≃ −µ− ≃ µ the matrix equation simplifies as:380

M =




ν+ µ −µ

−mΩ2 − g(1−m)ν+ Ω2 Ω2

0 − (1 + r)µeµh (1− r)µe−µh




(S106)381
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S6 FROM AMPLITUDE TO POWER382

S6.1 Particular case of a pair of wave trains383

Here we first consider the pressure amplitude and variance in the water layer, which has been well384

studied and measured (Cox & Jacobs, 1989; Ardhuin et al., 2013).385

In the case of only two wave trains of opposing direction with wave numbers k1 and k2 ≃ −k1386

with surface elevation387

ζ = a1 cos(k1x− σ1t) + a2 cos(k2x− σ2t) (S107)388

and velocity field389

w(z = 0) = a1σ1 sin(k1x− σ1t) + a2σ2 sin(k2x− σ2t) (S108)390

391

u(z = 0) = a1σ1 cos(k1x− σ1t)− a2σ2 cos(k2x− σ2t) (S109)392

the second order pressure is, keeping only the small wavenumber components,393

p2 = ρw(u
2 + w2) = −2ρσ1σ2a1a2 cos [Kx+ Ωt] (S110)394

Now we consider the variance of the pressure,395

< p22 > = 4ρ2wσ
2
1σ

2
2a

2
1a

2
2/2 (S111)396

= 2ρ2w
∑

k+k′=K

σ2σ′2a2a′2/2 (S112)397

= 8ρ2wσ
2
1σ

2
2

a21
2

a22
2

(S113)398

≃ 1

2
ρ2wΩ

4E1E2 (S114)399

=
1

4
ρ2wΩ

4
∑

k+k′=K

EE ′. (S115)400

S6.2 Case of random waves401

Fp,2h(K, fs) = 2 lim
|dK|→0,dfs→0

〈∣∣P+
2h

∣∣2
〉

dKxdKydfs
(S116)402



- 24 - De Carlo et al.

with403

P s
2h = ρaPa,2,h = −ρa

∂φa,2,h

∂t
404

= −ρa
∂

∂t

(
Ra(K)

ρw2σ′
ps,s

′

surf(K,Ω)

)
405

remembering406

ps,s
′

surf(K,Ω) = ρw
∑

k,s,k′,s′

Dz(k, s,k
′, s′)ZZ ′eiΘ (S117)407

one gets :408

P s
2h = ρa

∑

k,s,k′,s′

iRa(K)
(sσ + s′σ′)

2σ′
Dz(k, s,k

′, s′)ZZ ′eiΘ409

= ρa
∑

k,s,k′

isRa(K)
(σ + σ′)

2σ′
Dz(k, s,k

′, s)ZZ ′eiΘ (S118)410

Then,411

2|P+
2h|2 = 2ρ2a

∣∣∣∣∣
∑

k+k′=K,σ+σ′=Ω

Ra(K)
(σ + σ′)

2σ′
Dz(k,+,k

′,+)ZZ ′eiΘ

∣∣∣∣∣

2

412

= 2ρ2a · 2
∑

k+k′=K,σ+σ′=Ω

|Ra(K)|2 (σ + σ′)2

4σ′2
|Dz(k,+,k

′,+)|2|Z|2|Z ′|2 (S119)413

And the spectrum density of the source writes :414

Fp,2h(K, fs) = lim
|dK|→0,dfs→0

1

KxdKydfs

∑

k+k′=K,σ+σ′=Ω

(σ + σ′)2

σ′2
Ra(K)2ρ2a|Dz(k,+,k

′,+)|2|Z|2|Z ′|2

(S120)415

using the definition :416

E(kx, ky) = 2 lim
dkx,dky→0

|Z|2
dkxdky

(S121)417

418

Fp,2h(K, fs) = lim
|dK|→0,dfs→0

dkxdkxdk
′
xdk

′
y

4dKxdKydfs

∑

k,s,k′

(σ + σ′)2

σ′2
Ra(K)2ρ2a|Dz(k,+,k

′,+)|2E(kx, ky)E(k′x, k′y)

(S122)419

Taking the limit to continuous sums and using a change of variable from (kx, ky, k
′
x, k

′
y) to (fs, ϕ,Kx, Ky),420

with Kx = kx + k′x, Ky = ky + k′y and fs = (
√
gk +

√
gk′)/(2π) the Jacobian of the coordinate421
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transform is422

det

(
∂fs∂ϕ∂Kx∂Ky

∂kx∂ky∂k′x∂k
′
y

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

g cosϕ/(4πσ) − sinϕ/k 1 0

g sinϕ/(4πσ) cosϕ/k 0 1

g cosϕ′/(4πσ′) 0 1 0

g sinϕ′/(4πσ′) 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
g2

4πσ3σ′
[σ′ − σ cos (ϕ− ϕ′)] ,

(S123)423424

∫
Fp,2h(K, fs)dKxdKydfs = ρ2a

∫
(σ + σ′)2

4σ′2
|Ra|2 |Dz|2E(kx, ky)E(kx, ky)dkxdkydk′xdk′y425

= ρ2a

∫
(σ + σ′)2

4σ′2
|Ra|2 |Dz|2

E(kx, ky)E(k
′
x, k

′
y)4πσ

3σ′

g2 [σ′ − σ cos (ϕ− ϕ′)]
dfsdϕdKxdKy.426

To transform the spectra to frequency-direction spectra we use the Jacobian :427

E(f, ϕ) =
4πσ3

g2
E(kx, ky) (S124)428

And then obtain :429

∫
Fp,2h(K, fs)dKxdKydfs =

1

2
g2ρ2a

∫
fs
(σ + σ′)

4σ′4
|Ra|2 |Dz|2

E(f, ϕ)E(f ′, ϕ′)

[σ′ − σ cos (ϕ− ϕ′)]
dfsdϕdKxdKy.430

Now we use the unicity of the Fourier transform to identify the spectral density in the left and right431

hand sides and considering |Dz(k,+,k
′,+)| ≃ 2σσ′ :432

Fp,2h(K, fs) =
1

2
g2ρ2afs

∫ 2π

0

σ2(σ + σ′)

σ′2
|Ra|2

E(f, ϕ)E(f ′, ϕ′)

σ′ − σ cos (ϕ− ϕ′)
dϕ. (S125)433

S6.3 Acoustic energy in the water column434

We take the acoustic energy per unit of horizontal surface to be twice the kinetic energy. Consid-435

ering only K < Ω/αw, we have436

Ew = ρw

∫ 0

−h

u2 + w2dz (S126)437

Now expressing the velocities as a function of the velocity pontential in the water given by eq.438

(S80)439

Ew = ρw

∫ 0

−h

∑(
K2 + µ2

)
W 2

−

(
1 + r

1− r

)2

cos2(|µ|z)dz (S127)440

= ρw

∫ θa,2

θa,1

(
K2 + |µ|2

)
Fp,2h(θa, ϕ2, fs)

∣∣∣∣∣
A

P+
2,h

W−

A

1 + r

1− r

∣∣∣∣∣

2(
h

2
+

sin 2|µ|h
4|µ|

)
dθadϕ2441

(S128)442
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with443

∣∣∣∣
W−

A

1 + r

1− r

∣∣∣∣ =
∣∣∣∣

2ν(1 + r)

µ [i sin(|µ|h) + r cos(|µ|h)]

∣∣∣∣ (S129)444

and445 ∣∣∣∣∣
A

P+
2,h

∣∣∣∣∣ =
1

(σ + σ′)ρa
. (S130)446

Now, looking at the ratio of the acoustic energy and radiated power for any θa and ϕ2 we have,447

Qmax =
ΩEw

Fp,2h(θa, ϕ2, fs)/(ρaαa)
(S131)448

= Ωρwρaαa

(
K2 + |µ|2

)
∣∣∣∣∣
A

P+
2,h

W−

A

1 + r

1− r

∣∣∣∣∣

2(
h

2
+

sin 2|µ|h
4|µ|

)
(S132)449

=
ρwαa

ρaΩ

(
K2 + |µ|2

) ∣∣∣∣
W−

A

1 + r

1− r

∣∣∣∣
2(

h

2
+

sin 2|µ|h
4|µ|

)
(S133)450
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