Solvothermal sol-gel synthesis of TiO2 cellulose nanocrystalline composites
Résumé
Due to its unique supramolecular structure, cellulose is widely used as a template agent, ensuring an easy structuring of anatase TiO2 particles with subsequent release after the organics burning. This work is devoted to the synthesis of microcrystalline cellulose-TiO2 (MCC-TiO2) composite photocatalyst by preserving the intermediate organic-inorganic structures. A series of the MCC-TiO2 materials were prepared via solvothermal sol-gel method in n-decane and caproic acid solvents and characterized by X-ray diffraction, transmission electron microscopy, IR spectroscopy, 1 Н NMR and TG/DSC methods. The photocatalytic activity of the prepared materials was evaluated by the decomposition of formic acid in aqueous solutions. The composites failed to be formed in n-decane, while in caproic acid, acting as solvent and reagent, anatase TiO2 nanoparticles were formed onto the crystalline domains of cellulose, tightly fixed due to covalent Ti-O-C bonds. The materials formed in caproic acid showed a higher photocatalytic activity, explained by a complementarity of the organic and inorganic components. The specific activity (normalized on TiO2 mass) of best synthetized composite materials was almost twice higher than that of Aeroxide P25 TiO2 reference photocatalyst.
Origine | Fichiers produits par l'(les) auteur(s) |
---|