Differential transcendence of Bell numbers and relatives: a Galois theoretic approach - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Differential transcendence of Bell numbers and relatives: a Galois theoretic approach

Résumé

We show that Klazar's results on the differential transcendence of the ordinary generating function of the Bell numbers over the field $\mathbb{C}(\{t\})$ of meromorphic functions at $0$ is an instance of a general phenomenon that can be proven in a compact way using difference Galois theory. We present the main principles of this theory in order to prove a general result of differential transcendence over $\mathbb{C}(\{t\})$, that we apply to many other (infinite classes of) examples of generating functions, including as very special cases the ones considered by~Klazar. Most of our examples belong to Sheffer's class, well studied notably in umbral calculus. They all bring concrete evidence in support to the Pak-Yeliussizov conjecture according to which {a sequence whose both ordinary and exponential generating functions satisfy nonlinear differential equations with polynomial coefficients necessarily satisfies a \emph{linear} recurrence with polynomial coefficients}.
Fichier principal
Vignette du fichier
klazar-galois.pdf (381.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03091272 , version 1 (30-12-2020)
hal-03091272 , version 2 (25-08-2023)
hal-03091272 , version 3 (27-04-2024)

Identifiants

  • HAL Id : hal-03091272 , version 1

Citer

Alin Bostan, Lucia Di Vizio, Kilian Raschel. Differential transcendence of Bell numbers and relatives: a Galois theoretic approach. 2020. ⟨hal-03091272v1⟩
323 Consultations
214 Téléchargements

Partager

More