Uniform W1,p estimates for an elliptic operator with Robin boundary condition in a C1 domain - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2020

Uniform W1,p estimates for an elliptic operator with Robin boundary condition in a C1 domain

C. Conca
  • Fonction : Auteur
  • PersonId : 868445
A. Ghosh
  • Fonction : Auteur
T. Ghosh
  • Fonction : Auteur

Résumé

We consider the Robin boundary value problem div(A∇u) = div f + F in , a C 1 domain, with (A∇u − f) • n + αu = g on , where the matrix A belongs to V M O(R 3), and discover the uniform estimates on u W 1, p () , with 1 < p < ∞, independent of α. At the difference with the case p = 2, which is simpler, we call here the weak reverse Hölder inequality. This estimates show that the solution of the Robin problem converges strongly to the solution of the Dirichlet (resp. Neumann) problem in corresponding spaces when the parameter α tends to ∞ (resp. 0).
Fichier principal
Vignette du fichier
Correction_Robin problem_CVPDE.pdf (393.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03089990 , version 1 (05-01-2021)

Identifiants

Citer

Chérif Amrouche, C. Conca, A. Ghosh, T. Ghosh. Uniform W1,p estimates for an elliptic operator with Robin boundary condition in a C1 domain. Calculus of Variations and Partial Differential Equations, 2020, 59 (2), ⟨10.1007/s00526-020-1713-y⟩. ⟨hal-03089990⟩
43 Consultations
245 Téléchargements

Altmetric

Partager

More