Graph coverings and twisted operators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Graph coverings and twisted operators

Résumé

Given a graph and a representation of its fundamental group, there is a naturally associated twisted adjacency operator. The main result of this article is the fact that these operators behave in a controlled way under graph covering maps. When such an operator can be used to enumerate objects, or compute a partition function, this has concrete implications on the corresponding enumeration problem, or statistical mechanics model. For example, we show that if $\widetilde{\Gamma}$ is a finite connected covering graph of a graph $\Gamma$ endowed with edge-weights $x=\{x_e\}_e$, then the spanning tree partition function of $\Gamma$ divides the one of $\widetilde{\Gamma}$ in the ring $\mathbb{Z}[x]$. Several other consequences are obtained, some known, others new.
Fichier principal
Vignette du fichier
graph-coverings.pdf (526.4 Ko) Télécharger le fichier
Gmn.pdf (3.72 Ko) Télécharger le fichier
gamma.pdf (5.91 Ko) Télécharger le fichier
graph-coverings.bbl (5.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03088070 , version 1 (25-12-2020)
hal-03088070 , version 2 (08-02-2023)

Identifiants

  • HAL Id : hal-03088070 , version 1

Citer

David Cimasoni, Adrien Kassel. Graph coverings and twisted operators. 2020. ⟨hal-03088070v1⟩
148 Consultations
112 Téléchargements

Partager

More