Ergodic behaviour of a multi-type growth-fragmentation process modelling the mycelial network of a filamentous fungus - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Ergodic behaviour of a multi-type growth-fragmentation process modelling the mycelial network of a filamentous fungus

Résumé

In this work, we introduce a stochastic growth-fragmentation model for the expansion of the network of filaments, or mycelium, of a filamentous fungus. In this model, each individual is described by a discrete type e ∈ {0, 1} indicating whether the individual corresponds to an internal or terminal segment of filament, and a continuous trait x ≥ 0 corresponding to the length of this segment. The length of internal segments cannot grow, while the length of terminal segments increases at a deterministic speed v. Both types of individuals/segment branch according to a type-dependent mechanism. After constructing the stochastic bi-type growth-fragmentation process of interest, we analyse the corresponding mean measure (or first moment semigroup) and show a Harris-type ergodic theorem stating that, in the long run, the total mass of the mean measure increases expontially fast while the type-dependent density in trait stabilises to an explicit distribution. In the particular model we consider, which depends on only 3 parameters, all the quantities needed to describe this asymptotic behaviour are explicit, which paves the way for parameter inference based on data collected in lab experiments.
Fichier principal
Vignette du fichier
article-v1.pdf (603.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03087196 , version 1 (23-12-2020)
hal-03087196 , version 2 (17-02-2021)
hal-03087196 , version 3 (20-04-2022)

Identifiants

  • HAL Id : hal-03087196 , version 1

Citer

Milica Tomasevic, Amandine Véber, Vincent Bansaye. Ergodic behaviour of a multi-type growth-fragmentation process modelling the mycelial network of a filamentous fungus. 2020. ⟨hal-03087196v1⟩
757 Consultations
546 Téléchargements

Partager

More