In-plane backward and zero group velocity guided modes in rigid and soft strips - Archive ouverte HAL
Article Dans Une Revue Journal of the Acoustical Society of America Année : 2020

In-plane backward and zero group velocity guided modes in rigid and soft strips

Jérôme Laurent
Daniel Royer
  • Fonction : Auteur

Résumé

Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson’s ratio 0:5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324–1335 (2011)].
Fichier principal
Vignette du fichier
2020_LaurentRoyerPrada_JASA_ruban.pdf (5.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03082256 , version 1 (05-10-2021)

Identifiants

Citer

Jérôme Laurent, Daniel Royer, Claire Prada. In-plane backward and zero group velocity guided modes in rigid and soft strips. Journal of the Acoustical Society of America, 2020, 147 (2), pp.1302-1310. ⟨10.1121/10.0000760⟩. ⟨hal-03082256⟩
54 Consultations
73 Téléchargements

Altmetric

Partager

More