500 kW Partially Superconducting Flux modulation Machine for Aircraft Propulsion
Résumé
Turbo-electric propulsion is seen as a potential solution for reducing greenhouse gas emissions from the aircraft industry. However, electrical machines must achieve high power to mass ratios (PtM) to meet aviation requirements. Superconducting technologies are a promising option for creating compact and efficient machines. Indeed, superconductors make it possible to generate large magnetic fields while reducing the need for ferromagnetic materials. In previous works, a 50 kW partially superconducting flux modulation machine has been realised [1]. The flux modulation machine is an unconventional topology where the inductor is composed by a large static superconducting coil and rotating superconducting bulks acting as magnetic field shields. This topology allows controlling the inductor excitation while being brushless. In this paper, we design a 500 kW flux modulation machine considering the results of the 50 kW prototype and the constraints dues to the structure change of scale.