Further Insight into Interfacial Interactions in Iron/Liquid Zn-Al System
Résumé
In the galvannealing process, steel strips are immersed in molten zinc containing 0.100 to 0.135 wt pct Al at 450°C. The coating obtained is composed of a thin intermetallic compounds' layer called the inhibition layer (200 nm) covered with a thick zinc layer (10 lm). The nature of this inhibition layer has been investigated here for a galvanizing bath with a low Al content. The inhibition layer formed on industrial low-alloyed steels was characterized by transmission electron microscopy and atom probe tomography. The inhibition layer is composed of a thin Fe 2 Al 5 Zn x layer (20 nm), covered with a thicker d layer (200 nm). The Fe 2 Al 5 Zn x layer is discontinuous at the lowest bath Al content. Small precipitates (20 nm in diameter) with a stoichiometry corresponding to Fe 3 Al-containing Zn were also found for the first time in the d phase. The microstructure of the inhibition layer can be described with diffusion paths drawn in the Al-Fe-Zn ternary section at 450°C. This means that all interfaces of the inhibition layer are at thermodynamic equilibrium. The Fe 2 Al 5 Zn x layer is formed on the steel surface before the d layer. The nucleation and growth of the Fe 3 Al-Zn particles probably occur in the liquid metal at the same time as d.
Domaines
Matériaux
Fichier principal
2020_Zapico_MMTA_galvanisation_rupture_inhibition.pdf (2.28 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|