The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling

Résumé

We introduce a new unsupervised task, spoken language modeling: the learning of linguistic representations from raw audio signals without any labels, along with the Zero Resource Speech Benchmark 2021: a suite of 4 black-box, zero-shot metrics probing for the quality of the learned models at 4 linguistic levels: phonetics, lexicon, syntax and semantics. We present the results and analyses of a composite baseline made of the concatenation of three unsupervised systems: self-supervised contrastive representation learning (CPC), clustering (k-means) and language modeling (LSTM or BERT). The language models learn on the basis of the pseudo-text derived from clustering the learned representations. This simple pipeline shows better than chance performance on all four metrics, demonstrating the feasibility of spoken language modeling from raw speech. It also yields worse performance compared to text-based 'topline' systems trained on the same data, delineating the space to be explored by more sophisticated end-to-end models.
Fichier principal
Vignette du fichier
2011.11588.pdf (499.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03070362 , version 1 (15-12-2020)

Identifiants

Citer

Tu Anh Nguyen, Maureen de Seyssel, Patricia Rozé, Morgane Rivière, Evgeny Kharitonov, et al.. The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling. NeuRIPS Workshop on Self-Supervised Learning for Speech and Audio Processing, Dec 2020, Virtuel, France. ⟨hal-03070362⟩
99 Consultations
105 Téléchargements

Altmetric

Partager

More