First passage times of subordinators and urns - Archive ouverte HAL
Chapitre D'ouvrage Année : 2021

First passage times of subordinators and urns

Résumé

It is well-known that the first time a stable subordinator reaches [1, +∞). is Mittag-Leffler distributed. These distributions also appear as limiting distributions in triangular Polya urns. We give a direct link between these two results, using a previous construction of the range of stable subordinators. Beyond the stable case, we show that for a subclass of complete subordinators in the domain of attraction of stable subordinators, the law of the first passage time is given by the limit of an urn with the same replacement rule but with a random initial composition.
Fichier principal
Vignette du fichier
ron2.pdf (215.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03063774 , version 1 (14-12-2020)

Identifiants

Citer

Philippe Marchal. First passage times of subordinators and urns. Loïc Chaumont, Andreas E. Kyprianou. A lifetime of excursions through random walks and Lévy processes: A Volume in Honour of Ron Doney’s 80th Birthday, 78, Springer International Publishing, pp.343-355, 2021, Progress in Probability, 978-3-030-83311-4. ⟨10.1007/978-3-030-83309-1_18⟩. ⟨hal-03063774⟩
85 Consultations
78 Téléchargements

Altmetric

Partager

More